Lacewing venom: Linking the molecular and phenotypic evolution of adaptive trait...
Lacewing venom: Linking the molecular and phenotypic evolution of adaptive traits
Understanding the ability of species to adapt to their environment, or their evolvability, is central to evolutionary biology. Most traits are complex in that their phenotype results from the contributions of many genes with small...
ver más
¿Tienes un proyecto y buscas un partner? Gracias a nuestro motor inteligente podemos recomendarte los mejores socios y ponerte en contacto con ellos. Te lo explicamos en este video
CGL2014-62009-EXP
CANALIZACION DE FENOTIPOS INDUCIDOS AMBIENTALMENTE: TRASLACI...
73K€
Cerrado
CGL2017-89898-R
BASES GENOMICAS DE LA EVOLUCION DE LA DEFENSA POR ALCALOIDES...
169K€
Cerrado
RTI2018-096735-B-I00
IDENTIFICACION DE MECANISMOS QUE OPERAN EN LA EVOLUCION DE P...
109K€
Cerrado
BFU2010-18477
VARIABILIDAD GENETICA Y GENOMICA EN REGIONES DE MICRORNAS HA...
157K€
Cerrado
Información proyecto VenomEvolvability
Duración del proyecto: 60 meses
Fecha Inicio: 2022-02-03
Fecha Fin: 2027-02-28
Líder del proyecto
Innovasjon Norge
No se ha especificado una descripción o un objeto social para esta compañía.
Presupuesto del proyecto
1M€
Descripción del proyecto
Understanding the ability of species to adapt to their environment, or their evolvability, is central to evolutionary biology. Most traits are complex in that their phenotype results from the contributions of many genes with small, sometimes non-additive effects. While quantitative genetics has been instrumental in showing that short term evolvability depends on additive genetic variation, it ignores details of the molecular underpinnings of phenotypic characters that are crucial for the production and maintenance of additive genetic variation, and therefore evolvability at longer time scale. This impacts our understanding of evolvability and calls for model traits that enable the integration of quantitative and molecular genetics. Venoms are great model systems for this purpose. They are convergent sets of traits well-suited for comparative studies, and their phenotypes result from the combined actions of a relatively small number of secreted, functionally repurposed proteins, or toxins, that can be identified, characterised, and quantified. This project focuses on the venoms of Neuroptera, which venoms remain unstudied despite providing a unique opportunity among venomous animals to combine omics techniques, and comparative molecular and morphological evolution with evolutionary quantitative genetics. This multidisciplinary approach will elucidate the genetic and evolutionary mechanisms that underlie the emergence of venoms as complex evolutionary novelties and identify the molecular properties that facilitate or constrain their evolution across micro- and macroevolutionary timescales. Thus, the project will test central hypotheses about venom evolvability, but it is also likely to yield novel bioactive molecules with potential use as molecular tools and agrochemical leads. It will also establish venom as model systems that enable integration of quantitative and molecular genetics, thereby addressing a major methodological challenge in evolutionary biology.