Keratinocytes and Matrix metalloproteinases driving force of skin wound contrac...
Keratinocytes and Matrix metalloproteinases driving force of skin wound contraction?
Two unconventional concepts of skin contraction are presented that could change the current paradigm of wound healing. The overall objective is to clarify the underlying processes and to develop new therapies to prevent excessive...
ver más
¿Tienes un proyecto y buscas un partner? Gracias a nuestro motor inteligente podemos recomendarte los mejores socios y ponerte en contacto con ellos. Te lo explicamos en este video
Información proyecto WOUND CONTRACTION
Líder del proyecto
UNIVERSITAET BREMEN
No se ha especificado una descripción o un objeto social para esta compañía.
TRL
4-5
Presupuesto del proyecto
1M€
Fecha límite de participación
Sin fecha límite de participación.
Descripción del proyecto
Two unconventional concepts of skin contraction are presented that could change the current paradigm of wound healing. The overall objective is to clarify the underlying processes and to develop new therapies to prevent excessive scarring, ameliorate patients lives and reduce medical health care expenses. Specific emphasis lies on the role of Matrix metalloproteinases (MMP) and keratinocytes. Previous internationally acknowledged work of the PI resulted in these challenging concepts. The project will take place at the Medical School Hannover with its vast scientific infrastructure perfectly suited for this type of pioneer research. Unconventional is the concept that MMP lead to contrary cell responses. By degrading matrix molecules, MMP induce cell disassembly and migration. Only MMP-3 and -7 cleave cadherins and induce adhesion. MMP-3 deficient mice showed normal wound epithelialisation without contraction. Presumably by controlled proteolysis of intercellular molecules, cell adhesivity increases. Firm adhesion complexes provide stable anchorage sites for force generation. Selective MMP-3 inhibition would reduce contraction without impairing epithelialisation. The concept of the epithelial role in contraction differs from the paradigm and marks a beyond the state-of-art approach in wound healing. Keratinocytes at the air-liquid interphase close wounds by reepithelialisation and surface minimization. Hence, reduction of surface tension would decrease epidermal contraction. Alveolar surface tension is reduced by surfactants in preterm infants. Assuming that epidermal wounds could profit of surfactants is a high risk high gain approach of tackling hypertrophic scarring, but if successful it would revolutionize burn wound therapy.