ENGINEERING CELLULAR SELF‐ORGANISATION BY CONTROLLING THE IMMUNO-MECHANICAL INT...
Both scar formation and restitutio ad integrum during bone regeneration rely on cellular self-organisation that involve cell contraction and fibronectin/collagen formation. This early stage of cellular self-organization is later f...
Both scar formation and restitutio ad integrum during bone regeneration rely on cellular self-organisation that involve cell contraction and fibronectin/collagen formation. This early stage of cellular self-organization is later followed by angiogenesis and mineralisation. Scar-free regeneration of physiological tissue homeostasis requires balanced downregulation of early inflammation, however little is understood of the immune-mechanical coupling involved. We aim to lay the foundation for reducing patient suffering resulting from scarring by combining two distinct scientific worlds, for which we have been a major driving force: the distinct regulation of local inflammation and the mechano-biology during regeneration. By combining both of our areas of expertise, we aim to harvest the potential of the novel cross-disciplinary field Immuno-Mechanics.
This ambitious project concentrates first on identifing the different mechanical niches that immune cells experience early in successful healing and non-healing. Second, we will engineer synthetic niches to control fibroblasts and fibroblast-immune cell interactions to steer cell self-organisation and matrix formation in vitro. Third, we plan to verify that these synthetic niches reprogram hematoma composition and can thus reduce later scarring in vivo.
The proposed experiments are challenging as they have never been done this way before, but are feasible since they capitalise on our strengths in osteo-immunology and mechano-biology. Novel technologies will be combined in a unique way to engineer the immune-mechanical cell niche, to passivate activated immune cells and to reprogramme cell fate. This will allow us to substantially advance the basic understanding of the interplay between immune cells and their mechanical niche during early regeneration. By harnessing the mechanisms of the immune-mechanics interplay, we will lay the foundation for advancing immune-modulatory therapies to reduce harmful scarring.ver más
Seleccionando "Aceptar todas las cookies" acepta el uso de cookies para ayudarnos a brindarle una mejor experiencia de usuario y para analizar el uso del sitio web. Al hacer clic en "Ajustar tus preferencias" puede elegir qué cookies permitir. Solo las cookies esenciales son necesarias para el correcto funcionamiento de nuestro sitio web y no se pueden rechazar.
Cookie settings
Nuestro sitio web almacena cuatro tipos de cookies. En cualquier momento puede elegir qué cookies acepta y cuáles rechaza. Puede obtener más información sobre qué son las cookies y qué tipos de cookies almacenamos en nuestra Política de cookies.
Son necesarias por razones técnicas. Sin ellas, este sitio web podría no funcionar correctamente.
Son necesarias para una funcionalidad específica en el sitio web. Sin ellos, algunas características pueden estar deshabilitadas.
Nos permite analizar el uso del sitio web y mejorar la experiencia del visitante.
Nos permite personalizar su experiencia y enviarle contenido y ofertas relevantes, en este sitio web y en otros sitios web.