Investigation of Spin, Charge and Lattice Coupling Effects in Van der Waals Crys...
Investigation of Spin, Charge and Lattice Coupling Effects in Van der Waals Crystals in an electron microscope
Lattice structures are ubiquitous in nature, which determine diverse physical and chemical properties of materials. Exploring and controlling crystal structures is a central task of material engineering. Lattice phase transition i...
ver más
¿Tienes un proyecto y buscas un partner? Gracias a nuestro motor inteligente podemos recomendarte los mejores socios y ponerte en contacto con ellos. Te lo explicamos en este video
Proyectos interesantes
EMAGIN2D
Electrical control of magnetism in multiferroic 2D materials
2M€
Cerrado
EUR2020-112238
DISPOSITIVOS FUNCIONALES BASADOS EN MATERIALES MAGNETICOS BI...
60K€
Cerrado
SUPER2D
Superlattices and proximity effects in 2D materials molecule...
170K€
Cerrado
OXWALD
2D Oxide and van der Waals layered devices
161K€
Cerrado
ExBiaVdW
Exchange bias in two-dimensional van der Waals heterostructu...
190K€
Cerrado
MAT2015-68760-C2-2-P
INVESTIGACION DEL ORDEN INTERNO, CRISTALOGRAFIA Y MAGNETISMO...
83K€
Cerrado
Información proyecto SCALE-ICE
Duración del proyecto: 37 meses
Fecha Inicio: 2024-04-03
Fecha Fin: 2027-05-31
Fecha límite de participación
Sin fecha límite de participación.
Descripción del proyecto
Lattice structures are ubiquitous in nature, which determine diverse physical and chemical properties of materials. Exploring and controlling crystal structures is a central task of material engineering. Lattice phase transition is considered as a significant approach to manipulate and control functionalities, and thus, understanding the underlying mechanism of phase transition is a basic premise and guarantee for technological applications. A fundamental understanding of the cooperative interplay between charge, spin, orbital and lattice is required to manipulate this process. The emergence of magnetic Van der Waals (vdW) crystals opened up new horizons for engineering phase transition with magnetic orders together beyond the reach of existing materials. Traditional investigation of magnetic phase transition requires neutron diffraction, which requires nuclear reactor to generate neutrons. In this project, I propose to use three-dimensional electron diffraction (3DED) to study the 3D magnetic orderings, which will serve as a complimentary method to neutron diffraction. I will also study the dynamical behaviour of magnetic ordering in vdW crystals under different electric bias conditions. In addition, I will study the 3D magnetic field distribution at the interface of heterostructures constructed by vdW crystals. I will develop continuous fast holographic tomography (CFHT) with much lower dose and higher speed compared to traditional step-wise tomography. I will also apply a special 3D reconstruction algorithm to reveal and visualize the 3D magnetic field at the heterostructure interface. The outputs of this project will provide insight into the synergy effects of charge, spin and lattice in magnetic materials and greatly facilitate the discovery of novel magnetic materials.