Innovating Works

SCALE-ICE

Financiado
Investigation of Spin, Charge and Lattice Coupling Effects in Van der Waals Crys...
Investigation of Spin, Charge and Lattice Coupling Effects in Van der Waals Crystals in an electron microscope Lattice structures are ubiquitous in nature, which determine diverse physical and chemical properties of materials. Exploring and controlling crystal structures is a central task of material engineering. Lattice phase transition i... Lattice structures are ubiquitous in nature, which determine diverse physical and chemical properties of materials. Exploring and controlling crystal structures is a central task of material engineering. Lattice phase transition is considered as a significant approach to manipulate and control functionalities, and thus, understanding the underlying mechanism of phase transition is a basic premise and guarantee for technological applications. A fundamental understanding of the cooperative interplay between charge, spin, orbital and lattice is required to manipulate this process. The emergence of magnetic Van der Waals (vdW) crystals opened up new horizons for engineering phase transition with magnetic orders together beyond the reach of existing materials. Traditional investigation of magnetic phase transition requires neutron diffraction, which requires nuclear reactor to generate neutrons. In this project, I propose to use three-dimensional electron diffraction (3DED) to study the 3D magnetic orderings, which will serve as a complimentary method to neutron diffraction. I will also study the dynamical behaviour of magnetic ordering in vdW crystals under different electric bias conditions. In addition, I will study the 3D magnetic field distribution at the interface of heterostructures constructed by vdW crystals. I will develop continuous fast holographic tomography (CFHT) with much lower dose and higher speed compared to traditional step-wise tomography. I will also apply a special 3D reconstruction algorithm to reveal and visualize the 3D magnetic field at the heterostructure interface. The outputs of this project will provide insight into the synergy effects of charge, spin and lattice in magnetic materials and greatly facilitate the discovery of novel magnetic materials. ver más
31/05/2027
FZJ
190K€
Perfil tecnológico estimado
Duración del proyecto: 37 meses Fecha Inicio: 2024-04-03
Fecha Fin: 2027-05-31

Línea de financiación: concedida

El organismo HORIZON EUROPE notifico la concesión del proyecto el día 2024-04-03
Línea de financiación objetivo El proyecto se financió a través de la siguiente ayuda:
Presupuesto El presupuesto total del proyecto asciende a 190K€
Líder del proyecto
FORSCHUNGSZENTRUM JULICH GMBH No se ha especificado una descripción o un objeto social para esta compañía.
Perfil tecnológico TRL 4-5