Investigation of Spin, Charge and Lattice Coupling Effects in Van der Waals Crys...
Investigation of Spin, Charge and Lattice Coupling Effects in Van der Waals Crystals in an electron microscope
Lattice structures are ubiquitous in nature, which determine diverse physical and chemical properties of materials. Exploring and controlling crystal structures is a central task of material engineering. Lattice phase transition i...
Lattice structures are ubiquitous in nature, which determine diverse physical and chemical properties of materials. Exploring and controlling crystal structures is a central task of material engineering. Lattice phase transition is considered as a significant approach to manipulate and control functionalities, and thus, understanding the underlying mechanism of phase transition is a basic premise and guarantee for technological applications. A fundamental understanding of the cooperative interplay between charge, spin, orbital and lattice is required to manipulate this process. The emergence of magnetic Van der Waals (vdW) crystals opened up new horizons for engineering phase transition with magnetic orders together beyond the reach of existing materials. Traditional investigation of magnetic phase transition requires neutron diffraction, which requires nuclear reactor to generate neutrons. In this project, I propose to use three-dimensional electron diffraction (3DED) to study the 3D magnetic orderings, which will serve as a complimentary method to neutron diffraction. I will also study the dynamical behaviour of magnetic ordering in vdW crystals under different electric bias conditions. In addition, I will study the 3D magnetic field distribution at the interface of heterostructures constructed by vdW crystals. I will develop continuous fast holographic tomography (CFHT) with much lower dose and higher speed compared to traditional step-wise tomography. I will also apply a special 3D reconstruction algorithm to reveal and visualize the 3D magnetic field at the heterostructure interface. The outputs of this project will provide insight into the synergy effects of charge, spin and lattice in magnetic materials and greatly facilitate the discovery of novel magnetic materials.ver más
Seleccionando "Aceptar todas las cookies" acepta el uso de cookies para ayudarnos a brindarle una mejor experiencia de usuario y para analizar el uso del sitio web. Al hacer clic en "Ajustar tus preferencias" puede elegir qué cookies permitir. Solo las cookies esenciales son necesarias para el correcto funcionamiento de nuestro sitio web y no se pueden rechazar.
Cookie settings
Nuestro sitio web almacena cuatro tipos de cookies. En cualquier momento puede elegir qué cookies acepta y cuáles rechaza. Puede obtener más información sobre qué son las cookies y qué tipos de cookies almacenamos en nuestra Política de cookies.
Son necesarias por razones técnicas. Sin ellas, este sitio web podría no funcionar correctamente.
Son necesarias para una funcionalidad específica en el sitio web. Sin ellos, algunas características pueden estar deshabilitadas.
Nos permite analizar el uso del sitio web y mejorar la experiencia del visitante.
Nos permite personalizar su experiencia y enviarle contenido y ofertas relevantes, en este sitio web y en otros sitios web.