Electrical control of magnetism in multiferroic 2D materials
The avenue of magnetism in the field of 2D materials has marked the ultimate milestone in the discovery of one-atom-thick classes of materials. Bulk ferromagnets and antiferomagnets now have their 2D counterparts and are at one’s...
The avenue of magnetism in the field of 2D materials has marked the ultimate milestone in the discovery of one-atom-thick classes of materials. Bulk ferromagnets and antiferomagnets now have their 2D counterparts and are at one’s provision for the realization of imagination-limited artificial layered structures. At the same time, this awaited breakthrough has brought in new conundrums that demand investigation. This project is driven by the exploration of the limits of van der Waals 2D magnets from both a fundamental physics and a materials science and devices point of view. Firstly, it addresses fundamental key questions regarding spin order at the true 2D limit, which remain a mystery to the date. Here, the great variety of magnetic anisotropies exhibited by the transition metal halides will shed new light to the subtle equilibrium of interactions in few-layer magnets. Secondly, the project will invoke the control of the magnetic ground states and spin textures in true 2D magnets via electrical manipulation. Electric fields will assist in tuning the magnetic coupling and critical behaviour and the spatial manipulation of spin topologies. Anticipated breakthroughs will be the enhancement of the critical temperature in semiconducting single layer magnets towards room temperature 2D magnetism and the realization of single-layer multiferroic 2D materials. Thirdly, the field effect electrical control of magnetism in designer van der Waals and lateral heterostructures will allow for an enhanced magneto-electric coupling, yielding functional devices for effective charge-to-spin transduction that hold promise in spintronics. The proposal will achieve success by an integral approach to research, through the combination of the study of solid-state growth techniques together with the implementation of state-of-the-art deterministic manipulation of 2D materials in inert conditions and the use high resolution magnetism probes to test hybrid magnetic-optoelectronic devices.ver más
Presupuesto
El presupuesto total del proyecto asciende a
2M€
Líder del proyecto
UNIVERSITAT DE VALÈNCIA (ESTUDI GENERAL)
La universitat de valencia, como servicio publico que es, imparte las enseñanzas necesarias para la formacion de los estudiantes, la prepara...
02-11-2024:
Generación Fotovolt...
Se ha cerrado la línea de ayuda pública: Subvenciones destinadas al fomento de la generación fotovoltaica en espacios antropizados en Canarias, 2024
01-11-2024:
ENESA
En las últimas 48 horas el Organismo ENESA ha otorgado 6 concesiones
01-11-2024:
FEGA
En las últimas 48 horas el Organismo FEGA ha otorgado 1667 concesiones
Seleccionando "Aceptar todas las cookies" acepta el uso de cookies para ayudarnos a brindarle una mejor experiencia de usuario y para analizar el uso del sitio web. Al hacer clic en "Ajustar tus preferencias" puede elegir qué cookies permitir. Solo las cookies esenciales son necesarias para el correcto funcionamiento de nuestro sitio web y no se pueden rechazar.
Cookie settings
Nuestro sitio web almacena cuatro tipos de cookies. En cualquier momento puede elegir qué cookies acepta y cuáles rechaza. Puede obtener más información sobre qué son las cookies y qué tipos de cookies almacenamos en nuestra Política de cookies.
Son necesarias por razones técnicas. Sin ellas, este sitio web podría no funcionar correctamente.
Son necesarias para una funcionalidad específica en el sitio web. Sin ellos, algunas características pueden estar deshabilitadas.
Nos permite analizar el uso del sitio web y mejorar la experiencia del visitante.
Nos permite personalizar su experiencia y enviarle contenido y ofertas relevantes, en este sitio web y en otros sitios web.