Innovating Works

ExBiaVdW

Financiado
Exchange bias in two-dimensional van der Waals heterostructures
Exchange bias has been vital in magnetic storage devices to pin the magnetisation of the ferromagnetic reference layer in a fixed direction. It was extensively studied in thin-film heterostructures, however the origin of exchange... Exchange bias has been vital in magnetic storage devices to pin the magnetisation of the ferromagnetic reference layer in a fixed direction. It was extensively studied in thin-film heterostructures, however the origin of exchange bias is not well understood due to the subtle nature of the interfaces. Recent discovery of two-dimensional van der Waals magnetic materials opens up new avenues to scout for origin of exchange bias. Unlike thin-films, atomically sharp interface registry of two-dimensional materials is crucial for this purpose. The primary objective of this project is to do investigations on exchange bias in two-dimensional heterostructures to address the most fundamental at the same time enigmatic question - 'what is the underlying physics that controls exchange bias?!'. For this, the interface domain structure of the ferromagnetic/antiferromagnetic bilayer heterostructure will be investigated employing advanced synchrotron based x-ray photoemission electron microscopy facilities with polarisation control, which is one of the major expertise of the host. Embedded into two work packages, I intend to tackle this problem in two different interface spin configurations by judicious choice of antiferromagnetic layer; (i) parallel coupling of spins with the spins in the antiferromagnetic layer pointing out of the plane and, (ii) perpendicular coupling with the atomic spins of the antiferromagnetic layer lie in the two-dimensional plane. Electric field control of magnetism has been central to the sustainable advancement of spintronic devices. Two-dimensional materials are extremely sensitive to external electrical stimuli and demonstration of a field effect device based on two-dimensional magnetic materials could be remarkable. Taking advantage of the semiconducting/insulator nature of the antiferromagnetic two-dimensional materials, in a separate work package, I will also demonstrate the electric field control of exchange bias by applying a gate voltage. ver más
30/06/2025
190K€
Duración del proyecto: 36 meses Fecha Inicio: 2022-06-20
Fecha Fin: 2025-06-30

Línea de financiación: concedida

El organismo HORIZON EUROPE notifico la concesión del proyecto el día 2022-06-20
Línea de financiación objetivo El proyecto se financió a través de la siguiente ayuda:
Presupuesto El presupuesto total del proyecto asciende a 190K€
Líder del proyecto
JOHANNES GUTENBERGUNIVERSITAT MAINZ No se ha especificado una descripción o un objeto social para esta compañía.
Perfil tecnológico TRL 4-5