Injectable anisotropic microgel in hydrogel matrices for spinal cord repair
This project will engineer an injectable biomaterial that forms an anisotropic microheterogeneous structure in vivo. Injectable hydrogels enable a minimal invasive in situ generation of matrices for the regeneration of tissues and...
ver más
¿Tienes un proyecto y buscas un partner? Gracias a nuestro motor inteligente podemos recomendarte los mejores socios y ponerte en contacto con ellos. Te lo explicamos en este video
Proyectos interesantes
PDC2021-121658-C21
: FABRICACION Y CARACTERIZACION PRECLINICA DE UN MICROGEL BI...
81K€
Cerrado
HYDROZONES
Bioactivated hierarchical hydrogels as zonal implants for ar...
13M€
Cerrado
iDISC
Rejuvenation of the Intervertebral Disc Using Self-Healing B...
150K€
Cerrado
PRINTCART
Bioprinting of novel hydrogel structures for cartilage tissu...
266K€
Cerrado
ChondroGEL
Advanced Protein Based Materials for Cartilage Repair
213K€
Cerrado
Fecha límite de participación
Sin fecha límite de participación.
Descripción del proyecto
This project will engineer an injectable biomaterial that forms an anisotropic microheterogeneous structure in vivo. Injectable hydrogels enable a minimal invasive in situ generation of matrices for the regeneration of tissues and organs, but currently lack structural organization and unidirectional orientation. The anisotropic, injectable hydrogels to be developed will mimic local extracellular matrix architectures that cells encounter in complex tissues (e.g. nerves, muscles). This project aims for the development of a biomimetic scaffold for spinal cord regeneration.
To realize such a major breakthrough, my group will focus on three research objectives. i) Poly(ethylene glycol) microgel-in-hydrogel matrices will be fabricated with the ability to create macroscopic order due to microgel shape anisotropy and magnetic alignment. Barrel-like microgels will be prepared using an in-mold polymerization technique. Their ability to self-assemble will be investigated in function of their dimensions, aspect ratio, crosslinking density, and volume fraction. Superparamagnetic nanoparticles will be included into the microgels to enable unidirectional orientation by means of a magnetic field. Subsequently, the oriented microgels will be interlocked within a master hydrogel. ii) The microgel-in-hydrogel matrices will be equipped with (bio)functional properties for spinal cord regeneration, i.e., to control and optimize mechanical anisotropy and biological signaling by in vitro cell growth experiments. iii) Selected hydrogel composites will be injected after rat spinal cord injury and directional tissue growth and animal functional behavior will be analyzed.
Succesful fabrication of the proposed microgel-in-hydrogel matrix will provide a new type of biomaterial, which enables investigating the effect of an anisotropic structure on physiological and pathological processes in vivo. This is a decisive step towards creating a clinical healing matrix for anisotropic tissue repair.