Strong functional tunable self assembling hydrogel scaffolds for regenerative...
Strong functional tunable self assembling hydrogel scaffolds for regenerative medicine
This work proposes the development of novel material and fabrication platforms to generate strong, tunable, and highly biomimetic nanofibrous hydrogel scaffolds with an unparalleled level of control of both signaling and mechanica...
ver más
¿Tienes un proyecto y buscas un partner? Gracias a nuestro motor inteligente podemos recomendarte los mejores socios y ponerte en contacto con ellos. Te lo explicamos en este video
Proyectos interesantes
ANISOGEL
Injectable anisotropic microgel in hydrogel matrices for spi...
1M€
Cerrado
HYDROZONES
Bioactivated hierarchical hydrogels as zonal implants for ar...
13M€
Cerrado
MAT2009-14195-C03-01
CARACTERIZACION Y UTILIZACION DE POLIMEROS BASADOS EN PROTEI...
208K€
Cerrado
SupraBioElectris
Supramolecular biomimetic and electroconductive hydrogels: h...
173K€
Cerrado
Fecha límite de participación
Sin fecha límite de participación.
Descripción del proyecto
This work proposes the development of novel material and fabrication platforms to generate strong, tunable, and highly biomimetic nanofibrous hydrogel scaffolds with an unparalleled level of control of both signaling and mechanical properties. The break-through element is the combination of elastin-like polymers (ELPs) and self-assembling peptide amphiphiles (PAs) to create nanofibrous hydrogels with an unprecedented combination of strength, tenability, and bioactivity. The proposed work aims to provide solutions to the current main limitations of self-assembling hydrogels. In addition, it describes novel fabrication methods to create unique biomimetic environments. The work is divided into 2 work packages. The first Work Package (WP1) aims to develop two material platforms designed to combine the benefits of ELPs and PAs. The second Work Package (WP2) aims to develop scaffold fabrication platforms with unprecedented complexity and precision exhibiting defined hierarchical features and spatio-temporal control of physical and chemical signals designed for cartilage or disc therapies. All the scaffolds will be validated in vitro using human cells. This is a critical component for the generation of human-based models and more efficient regenerative therapies.