Hyaluronan rich matrices crosslinked with collagen like peptides for 3D culture...
Hyaluronan rich matrices crosslinked with collagen like peptides for 3D culture of ovarian cancer cells
In recent years creation of artificial matrices from relatively simple biomaterials that can support tumour growth in 3D is becoming an increasingly popular platform for recreating the tumour microenvironment (TME) in vitro since...
ver más
¿Tienes un proyecto y buscas un partner? Gracias a nuestro motor inteligente podemos recomendarte los mejores socios y ponerte en contacto con ellos. Te lo explicamos en este video
Proyectos interesantes
PID2019-106099RB-C42
MICROGELES BIOMIMETICOS PARA EL ESTUDIO DEL MICROENTORNO DEL...
151K€
Cerrado
ClickBioGel
Bio-based Hydrogels by Click Chemistry for Cartilage Tissue...
189K€
Cerrado
PID2021-123013OB-I00
BIOMATERIALES BIOINSPIRADOS PARA MODELAR LA INTERACCION CELU...
157K€
Cerrado
RTI2018-101256-J-I00
HIDROGELES BIOCOMPATIBLES CON RIGIDEZ DINAMICAMENTE AJUSTABL...
190K€
Cerrado
PID2020-114019RB-I00
HIDROGELES BIOACTIVOS Y MULTIFUNCIONALES DE BASE PEPTIDICA O...
145K€
Cerrado
ETICAN
ECM and TFEB interplay: from building multidisciplinary devi...
196K€
Cerrado
Información proyecto MHAtriCell
Duración del proyecto: 26 meses
Fecha Inicio: 2015-03-20
Fecha Fin: 2017-06-14
Fecha límite de participación
Sin fecha límite de participación.
Descripción del proyecto
In recent years creation of artificial matrices from relatively simple biomaterials that can support tumour growth in 3D is becoming an increasingly popular platform for recreating the tumour microenvironment (TME) in vitro since 3D cell culture models can more realistically reflect the in vivo TME compared with 2D monolayer cultures. In this project, we will design and fabricate novel hydrogel matrices comprising of hyaluronan crosslinked with collagen-like triple helical peptide amphiphiles (PAs). The novel HA-PA matrix will contain built-in cell adhesion sequence, HA-binding motif and matrix metalloproteinase (MMP) cleavable sequences. We will characterise these 3D hydrogel matrices to support the encapsulation and culture of ovarian cancer cells. The MMP-assisted hydrogel degradation, migration and invasion of ovarian cancer will be studied on these models using advanced electron microscopic techniques and enzyme assays. In the final phase of our study we will characterise the inhibitory potency of a highly potent and selector inhibitor of MMP-2 and MMP-9 on this system. The findings from this study will have direct implications in understanding the mechanisms associated with ovarian cancer dissemination and the newly developed hydrogel matrix can find further use as a novel biomaterial in tissue engineering and as a 3D cell culture model in cancer drug discovery and delivery.