How to evolve without centromeres: meiotic recombination dynamics in holocentric...
Centromeres strongly affect genomic architecture and meiotic recombination distribution and also play a key role in constraining karyotype evolution. The recombination landscape is also heavily influenced by chromosome number and...
Centromeres strongly affect genomic architecture and meiotic recombination distribution and also play a key role in constraining karyotype evolution. The recombination landscape is also heavily influenced by chromosome number and structure (i.e., karyotypes), as at least one crossover per chromosome (and rarely more than three) occurs in most species, making chromosome number the primary driver of recombination frequency. In addition, centromeres inhibit recombination, and therefore crossovers tend to occur mostly at chromosome ends.
However, several unrelated eukaryotic lineages do not have centromeres, or at least, not conventional ones. Such is the case for plants with holocentric chromosomes, where hundreds of small centromere-like units are evenly distributed across the length of the chromosome. Notably, holocentricity has evolved repeatedly across the tree of life and at least four times during plant evolution.
Holocentric plant species offer a unique opportunity to study the plasticity of meiotic recombination control. These species have lost typical centromeres, making them ideal for investigating how the recombination landscape was reshaped after the transition to holocentricity. Moreover, holocentricity unleashes changes in the karyotype, offering the possibility to analyze the effects of chromosome breaks and fusions on recombination frequency and distribution.
The HoloRECOMB project aims are as follows:
I. Analyze how transitions to holocentricity affect meiotic recombination dynamics in different holocentric plant lineages.
II. Explore the effect of chromosome breaks and fusions on crossover number and distribution.
III. Examine whether the crossover regulation in holocentric plants acts in a similar manner as in monocentric ones.
Understanding how holocentricity affects recombination dynamics will provide insights into important mechanistic aspects of meiosis with potential practical applications for crossover regulation in centromeric regions.ver más
Seleccionando "Aceptar todas las cookies" acepta el uso de cookies para ayudarnos a brindarle una mejor experiencia de usuario y para analizar el uso del sitio web. Al hacer clic en "Ajustar tus preferencias" puede elegir qué cookies permitir. Solo las cookies esenciales son necesarias para el correcto funcionamiento de nuestro sitio web y no se pueden rechazar.
Cookie settings
Nuestro sitio web almacena cuatro tipos de cookies. En cualquier momento puede elegir qué cookies acepta y cuáles rechaza. Puede obtener más información sobre qué son las cookies y qué tipos de cookies almacenamos en nuestra Política de cookies.
Son necesarias por razones técnicas. Sin ellas, este sitio web podría no funcionar correctamente.
Son necesarias para una funcionalidad específica en el sitio web. Sin ellos, algunas características pueden estar deshabilitadas.
Nos permite analizar el uso del sitio web y mejorar la experiencia del visitante.
Nos permite personalizar su experiencia y enviarle contenido y ofertas relevantes, en este sitio web y en otros sitios web.