A new paradigm for centromere biology Evolution and mechanism of CenH3 independ...
A new paradigm for centromere biology Evolution and mechanism of CenH3 independent chromosome segregation in holocentric insects
Faithful chromosome segregation in all eukaryotes relies on centromeres, the chromosomal sites that recruit kinetochore proteins and mediate spindle attachment during cell division. Fundamental to centromere function is a histone...
ver más
¿Tienes un proyecto y buscas un partner? Gracias a nuestro motor inteligente podemos recomendarte los mejores socios y ponerte en contacto con ellos. Te lo explicamos en este video
Proyectos interesantes
HoloRECOMB
How to evolve without centromeres: meiotic recombination dyn...
1M€
Cerrado
FJC2020-046386-I
Molecular mechisms that control chromosome segregation durin...
Cerrado
RECEPIANCE
Molecular reconstitution of epigenetic centromere inheritanc...
2M€
Cerrado
BFU2008-00815
ANALISIS DE LA FUNCION DE EXTRADENTICLE/HOMOTHORAX DURANTE L...
36K€
Cerrado
CHROMSEG
Structural Basis for Centromere-Mediated Control of Error-fr...
2M€
Cerrado
ASTER
Positioning of an artificial centrosome in a dynamic actin n...
196K€
Cerrado
Información proyecto CENEVO
Duración del proyecto: 85 meses
Fecha Inicio: 2017-10-27
Fecha Fin: 2024-11-30
Líder del proyecto
INSTITUT CURIE
No se ha especificado una descripción o un objeto social para esta compañía.
TRL
4-5
Presupuesto del proyecto
1M€
Fecha límite de participación
Sin fecha límite de participación.
Descripción del proyecto
Faithful chromosome segregation in all eukaryotes relies on centromeres, the chromosomal sites that recruit kinetochore proteins and mediate spindle attachment during cell division. Fundamental to centromere function is a histone H3 variant, CenH3, that initiates kinetochore assembly on centromeric DNA. CenH3 is conserved throughout most eukaryotes; its deletion is lethal in all organisms tested. These findings established the paradigm that CenH3 is an absolute requirement for centromere function. My recent findings undermined this paradigm of CenH3 essentiality. I showed that CenH3 was lost independently in four lineages of insects. These losses are concomitant with dramatic changes in their centromeric architecture, in which each lineage independently transitioned from monocentromeres (where microtubules attach to a single chromosomal region) to holocentromeres (where microtubules attach along the entire length of the chromosome). Here, I aim to characterize this unique CenH3-deficient chromosome segregation pathway. Using proteomic and genomic approaches in lepidopteran cell lines, I will determine the mechanism of CenH3-independent kinetochore assembly that led to the establishment of their holocentric architecture. Using comparative genomic approaches, I will determine whether this kinetochore assembly pathway has recurrently evolved over the course of 400 million years of evolution and its impact on the chromosome segregation machinery.
My discovery of CenH3 loss in holocentric insects establishes a new class of centromeres. My research will reveal how CenH3 that is essential in most other eukaryotes, could have become dispensable in holocentric insects. Since the evolution of this CenH3-independent chromosome segregation pathway is associated with the independent rises of holocentric architectures, my research will also provide the first insights into the transition from a monocentromere to a holocentromere.