Homology of labelled configuration spaces via spectral Lie algebra methods
The goal of this project is to produce new computations of the mod p homology of labelled configuration spaces of a general manifold with labels in an arbitray spectrum. These computations have remained outstanding challenges for...
ver más
¿Tienes un proyecto y buscas un partner? Gracias a nuestro motor inteligente podemos recomendarte los mejores socios y ponerte en contacto con ellos. Te lo explicamos en este video
Proyectos interesantes
GRAPHCPX
A graph complex valued field theory
1M€
Cerrado
MTM2016-80439-P
TEORIA DE HOMOTOPIA DE ESTRUCTURAS ALGEBRAICAS
111K€
Cerrado
2-3-AUT
Surfaces 3 manifolds and automorphism groups
725K€
Cerrado
MTM2016-78647-P
ESTRUCTURAS SUPERIORES EN GEOMETRIA DIFERENCIAL Y TEORIA DE...
164K€
Cerrado
HOTHSPOH
Homotopy theory of spaces of homomorphisms
207K€
Cerrado
HToMS
Homotopy Theory of Moduli Spaces
975K€
Cerrado
Información proyecto HLCSSLA
Duración del proyecto: 24 meses
Fecha Inicio: 2024-03-12
Fecha Fin: 2026-03-31
Líder del proyecto
KOBENHAVNS UNIVERSITET
No se ha especificado una descripción o un objeto social para esta compañía.
TRL
4-5
Presupuesto del proyecto
215K€
Fecha límite de participación
Sin fecha límite de participación.
Descripción del proyecto
The goal of this project is to produce new computations of the mod p homology of labelled configuration spaces of a general manifold with labels in an arbitray spectrum. These computations have remained outstanding challenges for decades except in special cases. Recently developed techniques in stable homotopy theory, including spectral Lie algebras and synthetic homotopy theory, have proven to be useful in understanding the algebraic structure on the homology groups of labelled configuration spaces in universal cases, but are less attuned to the topology of the input manifolds. In this project, I plan to attack the problem by incorporating the homotopy-theoretic methods with approaches that take into account the geometry of labelled configuration spaces. New computations of these objects will have applications in a range of fields including stable homotopy theory, string topology, embedding calculus of manifolds, mathematical physics, and motion planning. The supervisor will be Prof. Nathalie Wahl at the department of Mathematics of the University of Copenhagen.