The goal of the proposed project is to create a universal (AKSZ type) topological field theory with values in graph complexes, capturing the rational homotopy types of manifolds, configuration and embedding spaces.
If successful,...
ver más
¿Tienes un proyecto y buscas un partner? Gracias a nuestro motor inteligente podemos recomendarte los mejores socios y ponerte en contacto con ellos. Te lo explicamos en este video
Proyectos interesantes
HLCSSLA
Homology of labelled configuration spaces via spectral Lie a...
215K€
Cerrado
TMSS
Topology of Moduli Spaces and Strings
2M€
Cerrado
MTM2016-80439-P
TEORIA DE HOMOTOPIA DE ESTRUCTURAS ALGEBRAICAS
111K€
Cerrado
QFT-2-MOT & 3-FOLDS
From Quantum Field Theory to Motives and 3 manifolds
100K€
Cerrado
MSMA
Moduli Spaces Manifolds and Arithmetic
2M€
Cerrado
PGC2018-096454-B-I00
AUTOMORFISMOS DE SUPERFICIES DE RIEMANN Y DE KLEIN Y SUS ESP...
43K€
Cerrado
Información proyecto GRAPHCPX
Duración del proyecto: 63 meses
Fecha Inicio: 2016-03-01
Fecha Fin: 2021-06-30
Fecha límite de participación
Sin fecha límite de participación.
Descripción del proyecto
The goal of the proposed project is to create a universal (AKSZ type) topological field theory with values in graph complexes, capturing the rational homotopy types of manifolds, configuration and embedding spaces.
If successful, such a theory will unite certain areas of mathematical physics, topology, homological algebra and algebraic geometry. More concretely, from the physical viewpoint it would give a precise topological interpretation of a class of well studied topological field theories, as opposed to the current state of the art, in which these theories are defined by giving formulae without guarantees on the non-triviality of the produced invariants.
From the topological viewpoint such a theory will provide new tools to study much sought after objects like configuration and embedding spaces, and tentatively also diffeomorphism groups, through small combinatorial models given by Feynman diagrams. In particular, this will unite and extend existing graphical models of configuration and embedding spaces due to Kontsevich, Lambrechts, Volic, Arone, Turchin and others.
From the homological algebra viewpoint a field theory as above provides a wealth of additional algebraic structures on the graph complexes, which are some of the most central and most mysterious objects in the field.
Such algebraic structures are expected to yield constraints on the graph cohomology, as well as ways to construct series of previously unknown classes.