High-energy micro-supercapacitors based on low-cost materials
Miniaturized energy storage solutions are key to powering the modern era of connected devices, which is at the heart of Internet of Things (IoT) concept. Microsupercapacitor electrodes with 3D architectures have drawn increasing i...
ver más
¿Tienes un proyecto y buscas un partner? Gracias a nuestro motor inteligente podemos recomendarte los mejores socios y ponerte en contacto con ellos. Te lo explicamos en este video
Proyectos interesantes
PDC2021-121868-C21
FABRICACION LASER DE ELECTRODOS PARA SUPERCONDENSADORES
92K€
Cerrado
ENE2014-56109-C3-3-R
NANOCOMPUESTOS HIBRIDOS DE CARBONO Y OXIDOS METALICOS PARA S...
145K€
Cerrado
SASPE
Subduing Self-discharge of All-solid-state supercapacitors b...
200K€
Cerrado
ENHANCER
Engineering Hybrid Metal Nitrides/Carbon-Atom Wire Novel Mat...
189K€
Cerrado
ENE2014-56109-C3-1-R
NANOCOMPUESTOS HIBRIDOS DE CARBONO Y OXIDOS METALICOS PARA S...
149K€
Cerrado
2D-Ink
Ink Jet printed supercapacitors based on 2D nanomaterials.
150K€
Cerrado
Información proyecto 3D-APP
Duración del proyecto: 18 meses
Fecha Inicio: 2022-04-19
Fecha Fin: 2023-10-31
Fecha límite de participación
Sin fecha límite de participación.
Descripción del proyecto
Miniaturized energy storage solutions are key to powering the modern era of connected devices, which is at the heart of Internet of Things (IoT) concept. Microsupercapacitor electrodes with 3D architectures have drawn increasing interest in recent years due to their better energetic performances while maintaining a reduced footprint occupancy. Thin films of pseudocapacitive RuO2 active materials deposited onto highly porous Pt current collectors, sculptured via the hydrogen bubble templated electrodeposition, have led to energy storage microdevices with extremely high power, long lifetime and with energy densities competing with that of micro-batteries. These microsupercapacitor electrodes stand miles ahead from previously reported studies both in terms of their surface area and surface capacitance, making them suitable for embedded electronics demanding high energy/high power density per footprint area.
However, the cost of Ru and Pt considerably limits their commercial applications on a large scale relegating Ru-based micro-supercapacitors to niche applications. The substitution of ruthenium with alternative transition metal electrodes characterized by lower cost and higher abundance is therefore a requirement to reduce the price of electrochemical microstorage systems and enable long-term sustainability for a wide range of applications in everyday life.
The EU-funded 3D-APP project will address this challenge in producing MnO2 deposited on porous Ni using simple and scalable processes that result high-energy electrodes that are economically feasible. These electrodes will be combined with innovative ionic liquid-based electrolytes in solid form to achieve collective and scalable fabrication of low-cost prototypes onto silicon wafers or flexible polymer substrates.