Ink Jet printed supercapacitors based on 2D nanomaterials.
This proposal will determine the technical-economic viability of scaling-up ultra-thin, ink-jet printed films based on liquid-phase exfoliated single atomic layers of a range of nanomaterials. The PI has developed methods to produ...
ver más
¿Tienes un proyecto y buscas un partner? Gracias a nuestro motor inteligente podemos recomendarte los mejores socios y ponerte en contacto con ellos. Te lo explicamos en este video
Proyectos interesantes
RTI2018-096199-B-I00
DESARROLLO DE MATERIALES NANO-ESTRUCTURADOS BASADOS EN GRAFE...
73K€
Cerrado
ENE2014-56109-C3-3-R
NANOCOMPUESTOS HIBRIDOS DE CARBONO Y OXIDOS METALICOS PARA S...
145K€
Cerrado
PLEC2022-009328
Re-EVOLución de la Tecnología de baterías. Desarrollo integr...
385K€
Cerrado
PCI2019-103637
INNOVATIVE NANOSTRUCTURED ELECTRODES FOR ENERGY STORAGE CONC...
170K€
Cerrado
NANO-3D-LION
Nanoscale 3D Printing of a Lithium Ion Battery Rethinking t...
2M€
Cerrado
ENE2011-22556
NANOCRISTALES SEMICONDUCTORES DISEÑADOS PARA SUPERCONDENSADO...
145K€
Cerrado
Información proyecto 2D-Ink
Duración del proyecto: 18 meses
Fecha Inicio: 2015-03-16
Fecha Fin: 2016-09-30
Fecha límite de participación
Sin fecha límite de participación.
Descripción del proyecto
This proposal will determine the technical-economic viability of scaling-up ultra-thin, ink-jet printed films based on liquid-phase exfoliated single atomic layers of a range of nanomaterials. The PI has developed methods to produce in liquid nanosheets of a range of layered materials such as graphene, transition metal oxides, etc. These 2D-materials have immediate and far-reaching potential in several high-impact technological applications such as microelectronics, composites and energy harvesting and storage. 2DNanoCaps (ERC ref: 278516) has demonstrated that lab-scale ultra-thin graphene-based supercapacitor electrodes result in unusually high-power and extremely long device life-time (100% capacitance retention for 5000 charge-discharge cycles at the high power scan rate of 10,000 mV/s). This performance is an order of magnitude better than similar systems produced with conventional methods which cause materials restacking and aggregation. A following ERC PoC grant (2D-USD, Project-Number 620189) is currently focussed on up-scaling the production of thin-films deposition methods based on ultrasonic spray for the production of large-area electrodes for supercapacitors applications. In this proposal we want to explore the new concept of manufacturing conductive, robust, thin, easily assembled electrode and solid electrolytes to realize highly-flexible and all-solid-state supercapacitors by ink-jet printing. This opportunity is particularly relevant to the electronics and portable-device industry and offers the possibility to solve flammability issues, maintaining light weight, flexibility, transparency and portability. In order to do so it will be imperative to develop ink-jet printing methods and techniques. We believe our combination of unique materials and cost-effective, robust and production-scalable process of ultra- thin ink-jet printing will enable us to compete for significant global market opportunities in the energy-storage space.