Subduing Self-discharge of All-solid-state supercapacitors by a novel hybrid Sol...
Subduing Self-discharge of All-solid-state supercapacitors by a novel hybrid Solid Polymer Electrolyte with layered inorganic nanofiller
The challenge taken worldwide in achieving a global climate-neutral society fasten the transition from fossil fuel to renewable energy and increasing the demand for energy storage systems (ESS) due to the intermittency of renewabl...
ver más
¿Tienes un proyecto y buscas un partner? Gracias a nuestro motor inteligente podemos recomendarte los mejores socios y ponerte en contacto con ellos. Te lo explicamos en este video
Proyectos interesantes
PDC2021-121868-C21
FABRICACION LASER DE ELECTRODOS PARA SUPERCONDENSADORES
92K€
Cerrado
PDC2021-121106-I00
SUPERCONDENSADORES MAGNETICOS HIBRIDOS DE ALTO RENDIMIENTO
115K€
Cerrado
ENHANCER
Engineering Hybrid Metal Nitrides/Carbon-Atom Wire Novel Mat...
189K€
Cerrado
PID2021-125357OB-I00
SUPERCONDENSADORES Y LA INTERFASE ELECTROLITO/ELECTRODO: COR...
209K€
Cerrado
MAT2016-78700-R
NUEVOS SUPERCONDENSADORES HIBRIDOS BASADOS EN ELECTRODOS DE...
242K€
Cerrado
RTI2018-097728-B-I00
SUPERCONDENSADORES CON ALTA EFICIENCIA Y EL PAPEL JUGADO POR...
145K€
Cerrado
Información proyecto SASPE
Duración del proyecto: 25 meses
Fecha Inicio: 2022-06-23
Fecha Fin: 2024-07-31
Líder del proyecto
OULUN YLIOPISTO
No se ha especificado una descripción o un objeto social para esta compañía.
TRL
4-5
Presupuesto del proyecto
200K€
Fecha límite de participación
Sin fecha límite de participación.
Descripción del proyecto
The challenge taken worldwide in achieving a global climate-neutral society fasten the transition from fossil fuel to renewable energy and increasing the demand for energy storage systems (ESS) due to the intermittency of renewable energy sources. Supercapacitors (SC), especially hybrid supercapacitors, are a promising technology for powering hybrids, electric cars, or micro-grids, owing to many exciting advantages over batteries concerning specific power and cycle life. However, some research challenges such as high self-discharge, high production cost, and safety concerns impede market uptake. So the development of efficient, cost-effective SC technology with extremely low self-discharge, high energy and power density is significant.
The SASPE aims at developing an all solid-state supercapacitor and build a novel strategy to reduce its self-discharge by applying modified solid polymer electrolyte with layered inorganic materials. Notably, SASPE will introduce a novel hybrid solid polymer electrolyte (SPE) with high ionic conductivity that can reduce the self-discharge of SCs, which will be prepared by a simple, environmentally benign, and cost-effective method. The SASPE will guarantee SC's safe operation by using modified SPE with high mechanical strength. SASPE also offers 2D hybrid binder-free electrodes with promising electrochemical performance such as specific capacitance, energy density, and power density. The project will connect the physical properties of inorganic materials with their electrochemical properties by using a nanofiller/matrix synthesis approach and in-depth physicochemical and electrochemical characterization techniques.
SASPE will bring novel hybrid SPE along with high capacitance electrode materials and will make a solution for problems faced in current SC technology. The project will play a vital role in the electric vehicle industry by providing essential research progress in SC technology, which will help attain a green environment.