Subduing Self-discharge of All-solid-state supercapacitors by a novel hybrid Sol...
Subduing Self-discharge of All-solid-state supercapacitors by a novel hybrid Solid Polymer Electrolyte with layered inorganic nanofiller
The challenge taken worldwide in achieving a global climate-neutral society fasten the transition from fossil fuel to renewable energy and increasing the demand for energy storage systems (ESS) due to the intermittency of renewabl...
ver más
Descripción del proyecto
The challenge taken worldwide in achieving a global climate-neutral society fasten the transition from fossil fuel to renewable energy and increasing the demand for energy storage systems (ESS) due to the intermittency of renewable energy sources. Supercapacitors (SC), especially hybrid supercapacitors, are a promising technology for powering hybrids, electric cars, or micro-grids, owing to many exciting advantages over batteries concerning specific power and cycle life. However, some research challenges such as high self-discharge, high production cost, and safety concerns impede market uptake. So the development of efficient, cost-effective SC technology with extremely low self-discharge, high energy and power density is significant.
The SASPE aims at developing an all solid-state supercapacitor and build a novel strategy to reduce its self-discharge by applying modified solid polymer electrolyte with layered inorganic materials. Notably, SASPE will introduce a novel hybrid solid polymer electrolyte (SPE) with high ionic conductivity that can reduce the self-discharge of SCs, which will be prepared by a simple, environmentally benign, and cost-effective method. The SASPE will guarantee SC's safe operation by using modified SPE with high mechanical strength. SASPE also offers 2D hybrid binder-free electrodes with promising electrochemical performance such as specific capacitance, energy density, and power density. The project will connect the physical properties of inorganic materials with their electrochemical properties by using a nanofiller/matrix synthesis approach and in-depth physicochemical and electrochemical characterization techniques.
SASPE will bring novel hybrid SPE along with high capacitance electrode materials and will make a solution for problems faced in current SC technology. The project will play a vital role in the electric vehicle industry by providing essential research progress in SC technology, which will help attain a green environment.
Seleccionando "Aceptar todas las cookies" acepta el uso de cookies para ayudarnos a brindarle una mejor experiencia de usuario y para analizar el uso del sitio web. Al hacer clic en "Ajustar tus preferencias" puede elegir qué cookies permitir. Solo las cookies esenciales son necesarias para el correcto funcionamiento de nuestro sitio web y no se pueden rechazar.
Cookie settings
Nuestro sitio web almacena cuatro tipos de cookies. En cualquier momento puede elegir qué cookies acepta y cuáles rechaza. Puede obtener más información sobre qué son las cookies y qué tipos de cookies almacenamos en nuestra Política de cookies.
Son necesarias por razones técnicas. Sin ellas, este sitio web podría no funcionar correctamente.
Son necesarias para una funcionalidad específica en el sitio web. Sin ellos, algunas características pueden estar deshabilitadas.
Nos permite analizar el uso del sitio web y mejorar la experiencia del visitante.
Nos permite personalizar su experiencia y enviarle contenido y ofertas relevantes, en este sitio web y en otros sitios web.