High Cycle Fatigue Prediction Methodology for Fibre Reinforced Laminates for Air...
High Cycle Fatigue Prediction Methodology for Fibre Reinforced Laminates for Aircraft Structures in CROR Environment Development and Validation
The aim is to develop high cycle fatigue (HCF) testing capabilities for composite materials to study the long-term fatigue life of composite laminates used in new structural architectures subjected to high sound pressure loading i...
ver más
¿Tienes un proyecto y buscas un partner? Gracias a nuestro motor inteligente podemos recomendarte los mejores socios y ponerte en contacto con ellos. Te lo explicamos en este video
Proyectos interesantes
CERTAINTY
Uncertainty Quantification for Composite Structures Under Im...
225K€
Cerrado
HYBRIA
Hybrid laminates. Industrialization for aircraft nose fusela...
288K€
Cerrado
PID2021-125659OB-I00
PROTECCIONES AUXETICAS PARA IMPACTOS A ALTA VELOCIDAD DE OBJ...
170K€
Cerrado
Información proyecto HEGEL
Duración del proyecto: 36 meses
Fecha Inicio: 2017-01-10
Fecha Fin: 2020-01-31
Líder del proyecto
TWI LIMITED
No se ha especificado una descripción o un objeto social para esta compañía.
TRL
4-5
Presupuesto del proyecto
400K€
Fecha límite de participación
Sin fecha límite de participación.
Descripción del proyecto
The aim is to develop high cycle fatigue (HCF) testing capabilities for composite materials to study the long-term fatigue life of composite laminates used in new structural architectures subjected to high sound pressure loading in CROR environment.
The achievement of the overall project aim will be tackled through the accomplishment of two technical objectives: developing a sound source and amplification system representative of the high sound pressure generated by the CROR; developing and validating an enhanced accelerated fatigue prediction methodology framework to HCF life prediction of CFRP laminates used in the new aero-structures configurations in CROR environment.
Concepts for the sound source and amplification system will be designed according to the specifications. The best concept will be demonstrated and validated and successively the system will be manufactured and delivered to Fraunhofer IBP. The development of the methodology framework for HCF prediction of CFRP materials will be achieved through extensive experimental testing, physical analysis and numerical FE modelling activities. Following on from existing approaches, the final outcome of the project will be an expanded methodology framework for HCF prediction of CFRP laminates able to take into account the influence of environmental conditions as well as the presence of frequency dependent phenomena (e.g self heating). The framework will consist of fatigue models based on fatigue master curves and shift as well as FE predictive models that can be used as virtual assessment tools for HCF performance of CFRP materials.
The immediate impact of the project will be providing the IADP’s Partners and the aerospace community with advanced testing capabilities to facilitate the design process and the structural integrity assessment of the new aero-structure configurations as result of the CROR integration in order to meet safety and certification requirements.