Glycobiology of synaptic pruning in a developing brain
Effective neuron-microglial communication is a prerequisite to achieve the final connectome. It is mediated by both the formation of new synapses and selective removal of unnecessary connections through synaptic pruning. Recent ev...
ver más
¿Tienes un proyecto y buscas un partner? Gracias a nuestro motor inteligente podemos recomendarte los mejores socios y ponerte en contacto con ellos. Te lo explicamos en este video
Proyectos interesantes
LIPSYNING
Eat me microglia lipid scrambling as a signal for synaptic...
131K€
Cerrado
SYNSIGNAL
Molecular signals for synaptic pruning by microglia
180K€
Cerrado
ASTROSYN
Roles of astrocytes in synaptic transmission and plasticity
100K€
Cerrado
MicroSynCom
Mechanisms of Microglia Synapse Communication
2M€
Cerrado
BFU2015-65685-P
SEÑALES MOLECULARES SINAPTOGENICAS ENTRE NEURONAS Y GLIA
261K€
Cerrado
PID2019-111112RB-I00
RECEPTORES NMDA NO-CONVENCIONALES: ESTUDIOS A NIVEL CELULAR...
335K€
Cerrado
Información proyecto SinGly
Duración del proyecto: 30 meses
Fecha Inicio: 2020-04-14
Fecha Fin: 2022-10-31
Líder del proyecto
VILNIAUS UNIVERSITETAS
No se ha especificado una descripción o un objeto social para esta compañía.
TRL
4-5
Presupuesto del proyecto
146K€
Fecha límite de participación
Sin fecha límite de participación.
Descripción del proyecto
Effective neuron-microglial communication is a prerequisite to achieve the final connectome. It is mediated by both the formation of new synapses and selective removal of unnecessary connections through synaptic pruning. Recent evidences suggest that superfluous connections are eliminated by microglia. Almost 70% of the connections are lost in a primate cortex within six months of life. But what drives this selective elimination of so many synapses is a million-euro question. Identifying neuronal signals that differentiate weak synapses from the strong ones is an emerging frontier in cellular neuroscience. Several eat-me signals in synaptic pruning have been identified, but spare-me signals that limit phagocytic elimination of synapses are yet to be explored. Sialic acids on neuronal glycocalyx acts as spare-me signal and prevents microglial phagocytosis through Siglec receptors. Aberrant regulation of sialic acid caused neuronal loss and embryonic lethality. It is also becoming evident that sialic acid plays a key role in neurodevelopment, but the cellular and molecular mechanisms by which it regulates neurodevelopment is yet to be explored. This makes sialic acid an ideal candidate to evaluate its role in neurodevelopment. Hence, we aim to interrogate whether sialidases, glycocalyx recognizing proteins are developmentally regulated and also to define sialic acid’s role in synaptic pruning during neurodevelopment. We propose to implement gene, protein expression and metabolic profiling studies to investigate whether sialidases and glycocalyx recognizing proteins are developmentally regulated. Also, we will use fluorescent azido sugars in ex vivo cultures to visualise how sialic acid regulates synaptic pruning during neurodevelopment using superresolution STED microscopy. This paves a path to identify cellular and molecular mechanisms by which glycocalyx composition defines neuron-microglia interactions and thus circuit refinement through synaptic pruning.