Symmetry phenomena are well known to play a remarkable role in mathematics and its applications to chemistry, physics, and many other branches of natural sciences. It is, therefore, important to develop mathematical models to anal...
Symmetry phenomena are well known to play a remarkable role in mathematics and its applications to chemistry, physics, and many other branches of natural sciences. It is, therefore, important to develop mathematical models to analyze symmetries in a unified way.
Group theory provides such models in form of permutation representations, that is,
groups acting on sets. After linearizing, these actions gain more structure, which can be encoded
in matrices, facilitating both abstract investigations and concrete calculations.
A natural question to ask then is, how far global properties of such linear representations of some
complicated group are determined locally by better behaved subgroups.
All of these are objectives of representation theory.
The proposed project will contribute to this central problem of understanding the interplay
of global and local representation theory. It aims, in particular, at gaining new evidence for
the long-standing conjectures of Broue and Feit, and at developing methods to subsequently attack these in greater generality. This will be achieved by a combination of very classical methods from representation theory and homological algebra, powerful up-to-date methods from computational algebra, and the promising novel concept of bisets and double Burnside rings.
Since the proposed project addresses a wide range of cutting-edge problems that are of great interest to representation theorists, and moreover, have applications to related areas of mathematics as well, it carries a high potential for long-term cooperations with further research groups in Europe, and worldwide. Consequently, it comprises knowledge transfer within and into the EU, the introduction of a novel research approach, and the long-term integration of a high-potential researcher into the European science community.ver más
Seleccionando "Aceptar todas las cookies" acepta el uso de cookies para ayudarnos a brindarle una mejor experiencia de usuario y para analizar el uso del sitio web. Al hacer clic en "Ajustar tus preferencias" puede elegir qué cookies permitir. Solo las cookies esenciales son necesarias para el correcto funcionamiento de nuestro sitio web y no se pueden rechazar.
Cookie settings
Nuestro sitio web almacena cuatro tipos de cookies. En cualquier momento puede elegir qué cookies acepta y cuáles rechaza. Puede obtener más información sobre qué son las cookies y qué tipos de cookies almacenamos en nuestra Política de cookies.
Son necesarias por razones técnicas. Sin ellas, este sitio web podría no funcionar correctamente.
Son necesarias para una funcionalidad específica en el sitio web. Sin ellos, algunas características pueden estar deshabilitadas.
Nos permite analizar el uso del sitio web y mejorar la experiencia del visitante.
Nos permite personalizar su experiencia y enviarle contenido y ofertas relevantes, en este sitio web y en otros sitios web.