I intend to cross ressources of holomorphic curves techniques and traditional topological methods to study some fundamental questions in symplectic and contact geometry such as:
- The Weinstein conjecture in dimension greater tha...
ver más
¿Tienes un proyecto y buscas un partner? Gracias a nuestro motor inteligente podemos recomendarte los mejores socios y ponerte en contacto con ellos. Te lo explicamos en este video
Proyectos interesantes
TRANSHOLOMORPHIC
New transversality techniques in holomorphic curve theories
2M€
Cerrado
2-3-AUT
Surfaces 3 manifolds and automorphism groups
725K€
Cerrado
HomDyn
Homogenous dynamics arithmetic and equidistribution
2M€
Cerrado
MM-CAHF
Combinatorial aspects of Heegaard Floer homology for knots a...
140K€
Cerrado
TMSS
Topology of Moduli Spaces and Strings
2M€
Cerrado
CONTACTMATH
Legendrian contact homology and generating families
710K€
Cerrado
Información proyecto GEODYCON
Líder del proyecto
UNIVERSITE DE NANTES
No se ha especificado una descripción o un objeto social para esta compañía.
TRL
4-5
Presupuesto del proyecto
888K€
Fecha límite de participación
Sin fecha límite de participación.
Descripción del proyecto
I intend to cross ressources of holomorphic curves techniques and traditional topological methods to study some fundamental questions in symplectic and contact geometry such as:
- The Weinstein conjecture in dimension greater than 3.
- The construction of new invariants for both smooth manifolds and Legendrian/contact manifolds, in particular, try to define an analogue of Heegaard Floer homology in dimension larger than 3.
- The link, in dimension 3, between the geometry of the ambient manifold (especially hyperbolicity) and the dynamical/topological properties of its Reeb vector fields and contact structures.
- The topological characterization of odd-dimensional manifolds admitting a contact structure.
A crucial ingredient of my program is to understand the key role played by open book decompositions in dimensions larger than three.
This program requires a huge amount of mathematical knowledges. My idea is to organize a team around Ghiggini, Laudenbach, Rollin, Sandon and myself, augmented by two post-docs and one PhD student funded by the project. This will give us the critical size to organize a very active working seminar and to have a worldwide attractivity and recognition.
I also plan to invite one confirmed researcher every year (for 1-2 months), to organize one conference and one summer school, as well as several focused weeks.