Homogenous dynamics arithmetic and equidistribution
We consider the dynamics of actions on homogeneous spaces of algebraic groups,
and propose to tackle a wide range of problems in the area, including the central open problems.
One main focus in our proposal is the study of the i...
ver más
¿Tienes un proyecto y buscas un partner? Gracias a nuestro motor inteligente podemos recomendarte los mejores socios y ponerte en contacto con ellos. Te lo explicamos en este video
Proyectos interesantes
FRACTALSANDMETRICNT
Fractals algebraic dynamics and metric number theory
1M€
Cerrado
GEODYCON
Geometry and dynamics via contact topology
888K€
Cerrado
AUTOMORPHIC
Automorphic forms and L functions
45K€
Cerrado
GOAT
Groups Of Algebraic Transformations
2M€
Cerrado
MTM2008-03465
COHOMOLOGIA DE ESPACIOS SINGULARES Y CATEGORIAS DERIVADAS
49K€
Cerrado
GMODGAMMADYNAMICS
Dynamics on homogeneous spaces spectra and arithmetic
1M€
Cerrado
Información proyecto HomDyn
Duración del proyecto: 67 meses
Fecha Inicio: 2019-04-11
Fecha Fin: 2024-11-30
Fecha límite de participación
Sin fecha límite de participación.
Descripción del proyecto
We consider the dynamics of actions on homogeneous spaces of algebraic groups,
and propose to tackle a wide range of problems in the area, including the central open problems.
One main focus in our proposal is the study of the intriguing and somewhat subtle rigidity properties of higher rank diagonal actions. We plan to develop new tools to study invariant measures for such actions, including the zero entropy case, and in particular Furstenberg's Conjecture about $\times 2,\times 3$-invariant measures on $\R / \Z$.
A second main focus is on obtaining quantitative and effective equidistribution and density results for unipotent flows, with emphasis on obtaining results with a polynomial error term.
One important ingredient in our study of both diagonalizable and unipotent actions is arithmetic combinatorics.
Interconnections between these subjects and arithmetic equidistribution properties, Diophantine approximations and automorphic forms will be pursued.