Legendrian contact homology and generating families
A contact structure on an odd dimensional manifold in a maximally non integrable hyperplane field. It is the odd dimensional counterpart of a symplectic structure. Contact and symplectic topology is a recent and very active area t...
ver más
¿Tienes un proyecto y buscas un partner? Gracias a nuestro motor inteligente podemos recomendarte los mejores socios y ponerte en contacto con ellos. Te lo explicamos en este video
Proyectos interesantes
TRANSHOLOMORPHIC
New transversality techniques in holomorphic curve theories
2M€
Cerrado
GEODYCON
Geometry and dynamics via contact topology
888K€
Cerrado
MTM2016-77642-C2-1-P
ALGEBRA Y GEOMETRIA EN SISTEMAS DINAMICOS Y FOLIACIONES SING...
94K€
Cerrado
NMST
New methods and interacions in Singularity Theory and beyond
1M€
Cerrado
SingSymp
Singularities and symplectic mapping class groups
1M€
Cerrado
MTM2013-46337-C2-2-P
ALGEBRA Y GEOMETRIA EN DINAMICA REAL Y COMPLEJA III - DINAMI...
20K€
Cerrado
Información proyecto CONTACTMATH
Líder del proyecto
UNIVERSITE PARISSUD
No se ha especificado una descripción o un objeto social para esta compañía.
TRL
4-5
Presupuesto del proyecto
710K€
Fecha límite de participación
Sin fecha límite de participación.
Descripción del proyecto
A contact structure on an odd dimensional manifold in a maximally non integrable hyperplane field. It is the odd dimensional counterpart of a symplectic structure. Contact and symplectic topology is a recent and very active area that studies intrinsic questions about existence, (non) uniqueness and rigidity of contact and symplectic structures. It is intimately related to many other important disciplines, such as dynamical systems, singularity theory, knot theory, Morse theory, complex analysis, ... Legendrian submanifolds are a distinguished class of submanifolds in a contact manifold, which are tangent to the contact distribution. These manifolds are of a particular interest in contact topology. Important classes of Legendrian submanifolds can be described using generating families, and this description can be used to define Legendrian invariants via Morse theory. Other the other hand, Legendrian contact homology is an invariant for Legendrian submanifolds, based on holomorphic curves. The goal of this research proposal is to study the relationship between these two approaches. More precisely, we plan to show that the generating family homology and the linearized Legendrian contact homology can be defined for the same class of Legendrian submanifolds, and are isomorphic. This correspondence should be established using a parametrized version of symplectic homology, being developed by the Principal Investigator in collaboration with Oancea. Such a result would give an entirely new type of information about holomorphic curves invariants. Moreover, it can be used to obtain more general structural results on linearized Legendrian contact homology, to extend recent results on existence of Reeb chords, and to gain a much better understanding of the geography of Legendrian submanifolds.