Functional impact of alternative splicing coupled to nonsense mediated decay in...
Functional impact of alternative splicing coupled to nonsense mediated decay in developing neurons
Differentiation of precursor cells into mature neurons relies on transcriptome-wide changes in gene expression that have to be coordinated in a precise spatiotemporal fashion. Alternative pre-mRNA splicing coupled to nonsense-medi...
ver más
¿Tienes un proyecto y buscas un partner? Gracias a nuestro motor inteligente podemos recomendarte los mejores socios y ponerte en contacto con ellos. Te lo explicamos en este video
NEUROCRYSP
Regulation of cryptic splice sites in neuronal differentiati...
231K€
Cerrado
NeuroASPECT
Neuronal Alternative Splicing and RNA Editing Crosstalk
158K€
Cerrado
BFU2017-89308-P
MECANISMOS MOLECULARES DE REGULACION DEL PROCESAMIENTO ALTER...
454K€
Cerrado
PID2019-105201RB-I00
DESCIFRANDO LA HETEROGENEIDAD DE LOS TUMORES NEUROENDOCRINOS...
216K€
Cerrado
BFU2011-29583
MECANISMOS DE REGULACION DEL SPLICING ALTERNATIVO DE PRECURS...
581K€
Cerrado
Información proyecto NEURO_NMD
Duración del proyecto: 32 meses
Fecha Inicio: 2017-03-15
Fecha Fin: 2019-12-04
Líder del proyecto
KINGS COLLEGE LONDON
No se ha especificado una descripción o un objeto social para esta compañía.
TRL
4-5
Presupuesto del proyecto
183K€
Fecha límite de participación
Sin fecha límite de participación.
Descripción del proyecto
Differentiation of precursor cells into mature neurons relies on transcriptome-wide changes in gene expression that have to be coordinated in a precise spatiotemporal fashion. Alternative pre-mRNA splicing coupled to nonsense-mediated decay (AS-NMD) is a widespread post-transcriptional mechanism known to orchestrate gene expression dynamics in developmental contexts. Earlier studies identified several neural targets of this pathway; however, in most cases, the extent to which AS-NMD contributes to the overall gene expression dynamics and biological significance of this regulation is poorly understood. Moreover, whether AS-NMD target repertoire undergoes considerable changes in developing brain and how this might fit to the global regulation network underlying neuronal differentiation remains unclear. I will address these questions using two separate approaches. First, I will investigate novel AS-NMD targets encoding actin cytoskeleton factors and controlled by an important regulator of neuronal alternative splicing, Ptbp1. I will elucidate the extent of AS-NMD regulation in these genes by modulating the inclusion of the NMD-promoting exons with corresponding antisense oligonucleotides. in mouse embryonic stem cells undergoing neuronal differentiation, neural stem cells and primary neurons. Second, I will systematically analyse how NMD contributes to different stages of neuronal development by acutely inhibiting this pathway in a time-resolved manner using genetic means. I will then identify gene expression effects and functional consequences of NMD inactivation using transcriptome sequencing (RNA-Seq) and appropriate cell biological methods. All in all, this work will provide critical quantitative insights into AS-NMD functions and uncover novel mechanisms allowing neurons to attain their unique morphological and functional properties.