Functional characterization of specialized metabolites from gut microbiomes
Composition changes of the human gut microbiome has been associated with a series of diseases. However, little is known about the mechanism of this microbiome alteration. Recent in silico studies revealed thousands of biosynthetic...
ver más
¿Tienes un proyecto y buscas un partner? Gracias a nuestro motor inteligente podemos recomendarte los mejores socios y ponerte en contacto con ellos. Te lo explicamos en este video
Proyectos interesantes
GenDAI
Genomic applications for laboratory Diagnostics supported by...
Cerrado
MetaboGutModel
Resolving metabolic interactions between the gut microbiota...
1M€
Cerrado
IBDIMAGE
Disruptive fluorescent technologies for inflammatory bowel d...
150K€
Cerrado
RTI2018-096946-B-I00
CARACTERIZACION DE LA BASE CELULAR DE LA ENFERMEDAD INFLAMAT...
242K€
Cerrado
IPEIBD
Identification of promoters and enhancers specific for infla...
212K€
Cerrado
RiPPs from the Gut
Functional Exploration of Biosynthetic Dark Matter in the Hu...
191K€
Cerrado
Información proyecto SMs-Gut
Duración del proyecto: 30 meses
Fecha Inicio: 2020-04-28
Fecha Fin: 2022-10-31
Fecha límite de participación
Sin fecha límite de participación.
Descripción del proyecto
Composition changes of the human gut microbiome has been associated with a series of diseases. However, little is known about the mechanism of this microbiome alteration. Recent in silico studies revealed thousands of biosynthetic gene clusters (BGCs) that encode diverse types of specialized metabolites from human microbiomes. Many of these molecules are potentially involved in shaping microbiome structure or directly affect host cell and contribute to disease development. To date, only colibactin, a hybrid polyketide/non-ribosomal peptide produced by Escherichia coli in human gut, has been experimentally validated for its deleterious metabolic impact on human host and linked to the development of colorectal cancer (CRC). Thus, this project aims to expand the knowledge of specialized metabolites produced by gut microbiome and unravel their role in development of inflammatory bowel disease (IBD) and CRC. State-of-the-art bioinformatic, synthetic biology and chemical-analytic technologies will be used to tackle this challenge. In silico identification of BGCs will be facilitated by sequence homology search and the occurrence of function-related resistant makers. The cloning process will be realized by either capturing native BGCs, adopting polymerase amplification or using synthetic DNA, followed by HiFi DNA assembly, Red/ET recombineering based DNA integration method or combining of both strategies. The chemical diversity of these specialized metabolites will be unlocked by heterologous expression of the cloned BGCs and structure elucidation of the produced molecules. The biological functions of the discovered compounds will be established by probing their genotoxicity and cytotoxicity in vitro with human intestinal cell lines.