FROM SINGLE MOLECULES TO CELL REPROGRAMMING: DECIPHERING AND RECODING DISORDERED...
FROM SINGLE MOLECULES TO CELL REPROGRAMMING: DECIPHERING AND RECODING DISORDERED PIONEER TRANSCRIPTION FACTORS
Pioneer transcription factors (pTFs) have unique capabilities beyond classical TFs: They can invade and open closed chromatin, initiating cell-fate changes. Their remarkable abilities have been used to steer cell-fate decisions an...
ver más
¿Tienes un proyecto y buscas un partner? Gracias a nuestro motor inteligente podemos recomendarte los mejores socios y ponerte en contacto con ellos. Te lo explicamos en este video
Proyectos interesantes
BFU2013-42709-P
DINAMICA DE LA ORGANIZACION NUCLEAR DURANTE EL DESARROLLO AN...
254K€
Cerrado
BFU2011-28587
IDENTIDAD CELULAR COMO FACTOR DETERMINANTE EN LA RESPUESTA A...
116K€
Cerrado
DynaDiff
Elucidating the interplay between nuclear compartments and t...
1M€
Cerrado
MITOFOLD
Revealing the structure and mechanism of mitotic chromosome...
3M€
Cerrado
BFU2014-55275-P
ANALISIS FUNCIONAL DE LOS MECANISMOS EPIGENETICOS DE REPROGR...
157K€
Cerrado
DyMERE
Dynamic mapping of epigenetic regulation during embryogenesi...
174K€
Cerrado
Información proyecto PIONEER
Duración del proyecto: 62 meses
Fecha Inicio: 2022-10-10
Fecha Fin: 2027-12-31
Líder del proyecto
HASKOLI ISLANDS
No se ha especificado una descripción o un objeto social para esta compañía.
TRL
4-5
Presupuesto del proyecto
2M€
Fecha límite de participación
Sin fecha límite de participación.
Descripción del proyecto
Pioneer transcription factors (pTFs) have unique capabilities beyond classical TFs: They can invade and open closed chromatin, initiating cell-fate changes. Their remarkable abilities have been used to steer cell-fate decisions and to induce a pluripotent stem cell state through poorly understood pathways. Like most TFs, pTFs consist of structured DNA-binding domains (DBDs) flanked by long intrinsically disordered regions (IDRs). In attempts to explain their pioneering functions, intense focus has been on how the structured DBDs of pTFs interact with the nucleosome core particle. Yet, the critical interactions with nucleosomes beyond the core particle, the interplay between DBDs and IDRs, and the molecular mechanism of chromatin invading and opening, remain unclear.
The extensive disorder of pTFs places them outside the scope of current structural biology efforts and understanding their functions therefore requires a different approach. Single-molecule spectroscopy offers a powerful toolbox to monitor dynamic molecular systems and measure their conformational distributions. These methods enable quantitative modeling of distances and dynamics in biomolecules over timescales reaching over 15 orders of magnitude. Building on our recent breakthroughs in single-molecule techniques for studying highly disordered proteins in chromatin regulation and our preliminary data on pTF IDRs, we are in a unique position to apply our expertise to the molecular mechanism of pTFs.
Using five established pTFs involved in four distinct cell reprogramming pathways, we intend to: 1) map conformational states, 2) decipher kinetic mechanisms, 3) engineer new pTFs, and 4) observe chromatin remodelling, both in vitro and within the complex cellular environment. A molecular-level understanding of pTF functions may break the barrier to fully controlling cell fate, unleashing the enormous medical potential of cell-based therapy.