From cell shape to organism shape: the cellular basis for the evolutionary origi...
From cell shape to organism shape: the cellular basis for the evolutionary origin of animal morphogenesis
"My work concerns a critical question: How did the cellular mechanisms underpinning animal morphogenesis first evolve? While the first multicellular ancestors of modern animals have left limited fossil traces, insights can be gain...
ver más
¿Tienes un proyecto y buscas un partner? Gracias a nuestro motor inteligente podemos recomendarte los mejores socios y ponerte en contacto con ellos. Te lo explicamos en este video
Proyectos interesantes
FlexAggon
Evolutionary origin of cell adhesion: the basis of multicell...
196K€
Cerrado
PID2020-120609GB-I00
EL ORIGEN DE LOS ANIMALES; UNA APROXIMACION FUNCIONAL Y DE B...
351K€
Cerrado
BFU2008-00227
INVESTIGACIONES CITOLOGICAS Y MOLECULARES EN ESTADOS EVOLUTI...
103K€
Cerrado
BFU2017-90114-P
ORIGEN DE ANIMALES: DESCIFRANDO LA NATURALEZA DEL ANCESTRO U...
305K€
Cerrado
BFU2014-53765-P
CONTROL GENETICO DE LA GEOMETRIA CELULAR EN EPITELIOS: LA MO...
290K€
Cerrado
BFU2017-86152-P
REGULACION POR EDICION DE RNA Y EL COMPLEJO HALEX EN LAS TRA...
206K€
Cerrado
Información proyecto EvoMorphoCell
Duración del proyecto: 65 meses
Fecha Inicio: 2022-02-24
Fecha Fin: 2027-07-31
Líder del proyecto
INSTITUT PASTEUR
No se ha especificado una descripción o un objeto social para esta compañía.
TRL
4-5
Presupuesto del proyecto
1M€
Descripción del proyecto
"My work concerns a critical question: How did the cellular mechanisms underpinning animal morphogenesis first evolve? While the first multicellular ancestors of modern animals have left limited fossil traces, insights can be gained by studying their closest living relatives: the choanoflagellates. This group of microeukaryotes has several features of high relevance to animal origins, including temporal cell differentiation, facultative multicellularity, and a metazoan-like ""developmental gene toolkit"". Importantly, they have become amenable to functional genetics in the past few years. We will study the molecular and cellular mechanisms of three morphogenetic processes in choanoflagellates: (1) the formation of the ""collar complex"", a ring of microvilli surrounding the flagellum, which represents an example of complex single-cell morphogenesis and has been central to hypotheses about animal origins; (2) the molecular control of the differentiation of choanoflagellates into amoeboid cells under confinement, which I recently discovered and whose mechanisms remain unknown; (3) the cellular basis of adhesion and inversion in sheet colonies of the multicellular species Choanoeca flexa which I recently co-discovered. These three processes will be characterized by multiomic approaches which will allow unbiased comparisons with the growing dataset of molecular atlases for animal cell types. We will perform knockout, chemical inhibition, and fluorescent tagging of candidate genes identified by omics and/or known to play important roles in animals, including structural genes (such as those encoding cytoskeletal and adhesion proteins) and components of signalling pathways. Results will be analyzed in a rigorous phylogenetic framework. This project has the potential to answer long-standing questions on the pre-metazoan function of developmental genes and to inform the mechanistic basis of the transition from cell shape to organism shape in both development and evolution."