Foundations and applications of tropical moduli theory
Tropical geometry is the geometry of the combinatorial objects associated to degenerations and compactifications of algebraic (or analytic) varieties. As in algebraic geometry, the tropical geometry of moduli spaces is one of the...
ver más
¿Tienes un proyecto y buscas un partner? Gracias a nuestro motor inteligente podemos recomendarte los mejores socios y ponerte en contacto con ellos. Te lo explicamos en este video
Información proyecto TropicalModuli
Duración del proyecto: 29 meses
Fecha Inicio: 2018-04-19
Fecha Fin: 2020-09-30
Líder del proyecto
UNIVERSITY OF WARWICK
No se ha especificado una descripción o un objeto social para esta compañía.
TRL
4-5
Presupuesto del proyecto
195K€
Fecha límite de participación
Sin fecha límite de participación.
Descripción del proyecto
Tropical geometry is the geometry of the combinatorial objects associated to degenerations and compactifications of algebraic (or analytic) varieties. As in algebraic geometry, the tropical geometry of moduli spaces is one of the richest and most fundamental parts of this field, with many of the features of tropical geometry only being visible through the prism of moduli spaces.
The experienced researcher proposes to extend the foundations of tropical moduli theory, building on his prior work on tropical moduli stacks, and to explore new applications of these combinatorial techniques to classical problem in arithmetic and algebraic geometry.
During the fellowship the experienced researcher will focus on the
following three types of moduli spaces:
- The universal Picard variety, with applications to Brill-Noether theory (universally over the moduli space of curves), as well as to theta-characteristics, spin curves, and Prym varieties.
- Moduli of (higher) differentials, with applications to Eliashberg's problem on the compactification of the double ramification locus and the compactification of strata of abelian and quadratic differentials.
- Moduli of G-admissible covers with the goal of developing a tropical approach to the regular inverse Galois problem.