The proposal describes two main projects. Both of them concern cohomology of moduli spaces of Riemann surfaces, but the aims are rather different.
The first is a natural continuation of my work on tautological rings, which I inte...
ver más
¿Tienes un proyecto y buscas un partner? Gracias a nuestro motor inteligente podemos recomendarte los mejores socios y ponerte en contacto con ellos. Te lo explicamos en este video
Proyectos interesantes
TMSS
Topology of Moduli Spaces and Strings
2M€
Cerrado
MTM2010-17389
ESPACIOS DE MODULI, CUESTIONES ALGEBRAICAS, ARITMETICAS Y TO...
133K€
Cerrado
MTM2017-89420-P
SINGULARIDADES, ARCOS, MAPPING CLASS GROUP E INTERACCIONES
18K€
Cerrado
HToMS
Homotopy Theory of Moduli Spaces
975K€
Cerrado
MTM2008-00250
SUPERFICIES DE RIEMANN, SIMETRIAS Y ESPACIOS DE MODULI
114K€
Cerrado
MSMA
Moduli Spaces Manifolds and Arithmetic
2M€
Cerrado
Información proyecto MODULISPACES
Duración del proyecto: 62 meses
Fecha Inicio: 2017-10-19
Fecha Fin: 2022-12-31
Líder del proyecto
STOCKHOLMS UNIVERSITET
No se ha especificado una descripción o un objeto social para esta compañía.
Presupuesto del proyecto
1M€
Fecha límite de participación
Sin fecha límite de participación.
Descripción del proyecto
The proposal describes two main projects. Both of them concern cohomology of moduli spaces of Riemann surfaces, but the aims are rather different.
The first is a natural continuation of my work on tautological rings, which I intend to work on with Qizheng Yin and Mehdi Tavakol. In this project, we will introduce a new perspective on tautological rings, which is that the tautological cohomology of moduli spaces of pointed Riemann surfaces can be described in terms of tautological cohomology of the moduli space M_g, but with twisted coefficients. In the cases we have been able to compute so far, the tautological cohomology with twisted coefficients is always much simpler to understand, even though it contains the same information. In particular we hope to be able to find a systematic way of analyzing the consequences of the recent conjecture that Pixton’s relations are all relations between tautological classes; until now, most concrete consequences of Pixton’s conjecture have been found via extensive computer calculations, which are feasible only when the genus and number of markings is small.
The second project has a somewhat different flavor, involving operads and periods of moduli spaces, and builds upon recent work of myself with Johan Alm, who I will continue to collaborate with. This work is strongly informed by Brown’s breakthrough results relating mixed motives over Spec(Z) and multiple zeta values to the periods of moduli spaces of genus zero Riemann surfaces. In brief, Brown introduced a partial compactification of the moduli space M_{0,n} of n-pointed genus zero Riemann surfaces; we have shown that the spaces M_{0,n} and these partial compactifications are connected by a form of dihedral Koszul duality. It seems likely that this Koszul duality should have further ramifications in the study of multiple zeta values and periods of these spaces; optimistically, this could lead to new irrationality results for multiple zeta values.