Flexible Li ion Batteries via Nanocrystal Nanocarbon Scaffolded Structures
The aim of this proposal is to develop next generation flexible high-energy density Li ion batteries. This project seeks to advance this field by developing generalized methodologies to effectively interface flexible nano carbon s...
ver más
¿Tienes un proyecto y buscas un partner? Gracias a nuestro motor inteligente podemos recomendarte los mejores socios y ponerte en contacto con ellos. Te lo explicamos en este video
Proyectos interesantes
PLEC2022-009328
Re-EVOLución de la Tecnología de baterías. Desarrollo integr...
385K€
Cerrado
URCHIN
continUous flow ReaCtor for Hierarchically desIgned Nanocomp...
183K€
Cerrado
MAT2010-19804
SINTESIS Y CARACTERIZACION DE NANOHILOS Y MATERIALES NANOEST...
97K€
Cerrado
MAT2008-03160
BATERIAS HIBRIDAS LITIO-ION DE CARGA RAPIDA Y ALTA DENSIDAD...
103K€
Cerrado
MAT2008-03160
BATERIAS HIBRIDAS LITIO-ION DE CARGA RAPIDA Y ALTA DENSIDAD...
103K€
Cerrado
PLEC2022-009472
Desarrollo de componentes más seguros para celdas de batería...
171K€
Cerrado
Información proyecto FlexBatteries
Duración del proyecto: 41 meses
Fecha Inicio: 2016-03-01
Fecha Fin: 2019-08-07
Fecha límite de participación
Sin fecha límite de participación.
Descripción del proyecto
The aim of this proposal is to develop next generation flexible high-energy density Li ion batteries. This project seeks to advance this field by developing generalized methodologies to effectively interface flexible nano carbon scaffolds with inorganic nanocrystals, and to obtain tailor made hierarchical assemblies as building blocks. Fabrication of these hierarchical materials whose chemical and mechanical properties can be optimized at the nano, micro and millimeter scale are key to ensure both high energy and power density, and structurally flexible components. Our strategy will significantly increase the loading of electro-active particles (nanocrystals) and maximize their contact/exposure to electrolytes in optimized conditions, which will improve the electrochemical properties of nanostructures. Parallel, by applying in situ electrochemical-Li-NMR-Neutron depth profile and XRD, the proposed multi-scale approach will deepen the understanding of fundamental issues such as Li+ diffusion path ways in nanocrystal-carbon scaffolded structures (Li ion kinetics), volume expansion of nanocrystals (stress/strain issues), thermal management (heat dissipation), gas evolution (via electrolyte decomposition) and various modes of particle degradation during battery charge/discharge cycling.