Exploiting Energy Flow in Plasmonic Catalytic Colloids
The aim of CATALIGHT is to use sunlight as a source of energy in order to trigger chemical reactions by harvesting photons with plasmonic nanoparticles and channelling the energy into catalytic materials. Plasmonic-catalytic devic...
ver más
¿Tienes un proyecto y buscas un partner? Gracias a nuestro motor inteligente podemos recomendarte los mejores socios y ponerte en contacto con ellos. Te lo explicamos en este video
Proyectos interesantes
PLASMHACAT
Plasmonics based Energy Harvesting for Catalysis
1M€
Cerrado
REPLY
REshaping Photocatalysis via Light Matter hYbridization in P...
2M€
Cerrado
PID2019-111772RB-I00
ANALISIS CUANTITATIVO DE LA CONTRIBUCION DE CARGAS CALIENTES...
109K€
Cerrado
PLASMMONS
Plasmons and Mechanical Motions at the Nano Scale Investigat...
150K€
Cerrado
PRIMA
Plasmon Resonance for IMproving the Absorption of solar cell...
3M€
Cerrado
SusNano
Sustainable Nanocomposites for Photocatalysis
100K€
Cerrado
Información proyecto CATALIGHT
Duración del proyecto: 64 meses
Fecha Inicio: 2018-08-23
Fecha Fin: 2023-12-31
Fecha límite de participación
Sin fecha límite de participación.
Descripción del proyecto
The aim of CATALIGHT is to use sunlight as a source of energy in order to trigger chemical reactions by harvesting photons with plasmonic nanoparticles and channelling the energy into catalytic materials. Plasmonic-catalytic devices would allow efficient harvest, transport, and injection of solar energy into molecules. To achieve this, imaging the energy flow at the nanoscale will be crucial for establishing the true potential of plasmonics, both in the context of yielding fundamental knowledge about the light-into-chemical energy conversion processes, and for moving from active towards efficient reactive devices within nanoscale environments.
CATALIGHT has roots in three underlying components, making this project an interwoven effort to break new grounds in a crucial field for the further development of nanoscale energy manipulation: A) Super-resolution imaging of the energy-flow at the nanoscale – with a view to unravel the most efficient mechanisms to guide solar energy into catalytic materials using plasmonic structures as photon harvesters. B) Scaling-up this process through the fabrication of hierarchical photocatalytic colloids – using image-learning for the design of colloidal sources for energy manipulation. C) Light-into-chemical energy conversion – boosting efficiencies in environmental and industrial catalytic processes using tailored photocatalysts.
The outcomes of this project will not only yield a substantial amount of fundamental knowledge in these crucial areas for the further development of the field, but also provide directly exploitable results for the applied sciences, particularly photocatalysis and fuel cells.