REshaping Photocatalysis via Light Matter hYbridization in Plasmonic Nanocavitie...
Life on Earth relies to a large extent on light-matter interactions. Photosynthesis is indeed a brilliant example of chemistry driven by light, which, as almost any naturally occurring interaction is optimized for the preservatio...
Life on Earth relies to a large extent on light-matter interactions. Photosynthesis is indeed a brilliant example of chemistry driven by light, which, as almost any naturally occurring interaction is optimized for the preservation of life. With the study of photocatalysis mankind targets to copy such natural processes, adapting them to the production of energy. In this context, REPLY represents an effective solution to impart control and acceleration on photoreactions for solar-to-fuel conversion via water splitting. To improve device efficiencies and to create new paradigms in semiconductor-based photocatalytic technology, here we propose to strengthen the coupling between light and photocatalysts, by exploiting the outstanding capabilities of plasmonic architectures in manipulating the electromagnetic radiation at the nanoscale. Precisely, a new energy landscape inside the semiconductor photocatalyst can be created via light/matter hybridization in the strong-coupling regime. This will ensure the effective control of the junction barrier height at the semiconductor/co-catalyst interface and a paradigmatic redefinition of the energetics and charge-transfer characteristics at solid/liquid heterojunctions. The proposed approach is readily converted to cost-effective semiconductor/co-catalyst ensembles in order to achieve photocatalytic activities comparable or even superior to the ones of golden benchmarking systems, typically based on toxic and/or unaffordable noble metals. The project identifies three objectives to reach the final goal of fabricating photo(electro)catalytic devices based on strong coupling regime: I) the realization of a new class of adaptive heterojunctions via light-matter hybridization; II) the understanding of the photophysical mechanisms that regulate the system architecture; III) the fabrication and characterization of a novel efficient photo(electro)catalyst prototype for solar-to-hydrogen conversion.ver más
Seleccionando "Aceptar todas las cookies" acepta el uso de cookies para ayudarnos a brindarle una mejor experiencia de usuario y para analizar el uso del sitio web. Al hacer clic en "Ajustar tus preferencias" puede elegir qué cookies permitir. Solo las cookies esenciales son necesarias para el correcto funcionamiento de nuestro sitio web y no se pueden rechazar.
Cookie settings
Nuestro sitio web almacena cuatro tipos de cookies. En cualquier momento puede elegir qué cookies acepta y cuáles rechaza. Puede obtener más información sobre qué son las cookies y qué tipos de cookies almacenamos en nuestra Política de cookies.
Son necesarias por razones técnicas. Sin ellas, este sitio web podría no funcionar correctamente.
Son necesarias para una funcionalidad específica en el sitio web. Sin ellos, algunas características pueden estar deshabilitadas.
Nos permite analizar el uso del sitio web y mejorar la experiencia del visitante.
Nos permite personalizar su experiencia y enviarle contenido y ofertas relevantes, en este sitio web y en otros sitios web.