Plasmons and Mechanical Motions at the Nano Scale Investigated with Frequency Do...
Plasmons and Mechanical Motions at the Nano Scale Investigated with Frequency Domain Experiments and Simulations
Plasmons are oscillations of charge carriers in metallic nanoparticles that confine light in the nanometer length-scale. Translationally symmetric arrays of metallic nanoparticles, termed Plasmonic Super-Crystals (PSCs), can becom...
ver más
¿Tienes un proyecto y buscas un partner? Gracias a nuestro motor inteligente podemos recomendarte los mejores socios y ponerte en contacto con ellos. Te lo explicamos en este video
Proyectos interesantes
PLASMHACAT
Plasmonics based Energy Harvesting for Catalysis
1M€
Cerrado
NIRPLANA
Near Infrared Semiconductor Plasmonic Nanocrystals for Enhan...
194K€
Cerrado
RealNanoPlasmon
Towards nanoscale reality in plasmonic hot carrier generatio...
192K€
Cerrado
PRIMA
Plasmon Resonance for IMproving the Absorption of solar cell...
3M€
Cerrado
SOLAR-PLUS
Maximizing the Efficiency of Luminescent Solar Concentrators...
100K€
Cerrado
MAT2008-02166
CONTROL DE LA ABSORCION Y LA EMISION OPTICAS DE NANOMATERIAL...
242K€
Cerrado
Información proyecto PLASMMONS
Duración del proyecto: 25 meses
Fecha Inicio: 2020-09-30
Fecha Fin: 2022-10-31
Fecha límite de participación
Sin fecha límite de participación.
Descripción del proyecto
Plasmons are oscillations of charge carriers in metallic nanoparticles that confine light in the nanometer length-scale. Translationally symmetric arrays of metallic nanoparticles, termed Plasmonic Super-Crystals (PSCs), can become an integral part of augmented light-harvesting technologies, like plasmonic solar cells and photocatalysts. A current limitation is that plasmons are fragile, short-living excitations, which are highly sensitive to the exact arrangement of matter at the nanoscale. The structural stability of PSCs is prone to multifarious nanomechanical motions such as nanoparticle-vibrations, colloidal phonons, and surface waves on the substrate. With this project, I aim to elucidate the role of nanomechanical motions on the plasmonic properties of PSCs. To achieve this goal I will employ White Light Absorption (WLA) to study plasmonic resonances and Brillouin Light Scattering (BLS) to study mechanical resonances. Plasmonically-enhanced BLS and spectroscopic investigation of plasmons in vibrationally-excited PSCs, will be used to reveal cross-talking between the two subsystems. A momentum-resolved view of vibrational waves will be acquired with angle-resolved BLS. The experimental results will be interpreted based on frequency-domain, finite-element simulations of plasmomechanical coupling phenomena. With this approach, I intend to adopt the concept of microscopic couplings from condensed-matter Physics, to a metamaterial and determine the fundamental excitations and interactions of these artificial structures. Understanding the interplay between plasmonic and structural degrees of freedom in PSCs is expected to pave the way for their use in plasmomechanical devices.