ExplainYourself proposes to study explainable automatic fact checking, the task of automatically predicting the veracity of textual claims using machine learning (ML) methods, while also producing explanations about how the model...
ver más
¿Tienes un proyecto y buscas un partner? Gracias a nuestro motor inteligente podemos recomendarte los mejores socios y ponerte en contacto con ellos. Te lo explicamos en este video
Proyectos interesantes
DECOLLAGE
DEep COgnition Learning for LAnguage GEneration
2M€
Cerrado
RTI2018-096846-B-C21
DEEPREADING: MINING, UNDERSTANDING, AND REASONING WITH MULTI...
147K€
Cerrado
PID2021-123005NB-I00
DETECCION Y GENERACION AUTOMATICA DE FALACIAS MEDIANTE EL US...
37K€
Cerrado
SEQCLAS
A Sequence Classification Framework for Human Language Techn...
3M€
Cerrado
PID2019-107579RB-I00
ARQUITECTURAS AVANZADAS DE APRENDIZAJE PROFUNDO APLICADAS AL...
271K€
Cerrado
Información proyecto ExplainYourself
Duración del proyecto: 68 meses
Fecha Inicio: 2022-12-17
Fecha Fin: 2028-08-31
Líder del proyecto
KOBENHAVNS UNIVERSITET
No se ha especificado una descripción o un objeto social para esta compañía.
TRL
4-5
Presupuesto del proyecto
1M€
Descripción del proyecto
ExplainYourself proposes to study explainable automatic fact checking, the task of automatically predicting the veracity of textual claims using machine learning (ML) methods, while also producing explanations about how the model arrived at the prediction. Automatic fact checking methods often use opaque deep neural network models, whose inner workings cannot easily be explained. Especially for complex tasks such as automatic fact checking, this hinders greater adoption, as it is unclear to users when the models' predictions can be trusted. Existing explainable ML methods partly overcome this by reducing the task of explanation generation to highlighting the right rationale. While a good first step, this does not fully explain how a ML model arrived at a prediction. For knowledge intensive natural language understanding (NLU) tasks such as fact checking, a ML model needs to learn complex relationships between the claim, multiple evidence documents, and common sense knowledge in addition to retrieving the right evidence. There is currently no explainability method that aims to illuminate this highly complex process. In addition, existing approaches are unable to produce diverse explanations, geared towards users with different information needs.
ExplainYourself radically departs from existing work in proposing methods for explainable fact checking that more accurately reflect how fact checking models make decisions, and are useful to diverse groups of end users. It is expected that these innovations will apply to explanation generation for other knowledge-intensive NLU tasks, such as question answering or entity linking. To achieve this, ExplainYourself builds on my pioneering work on explainable fact checking as well as my interdisciplinary expertise.