Recent genomics analyses have facilitated the discovery of a novel major class of stable transcripts, now called long non-coding RNAs (lncRNAs). A growing number of analyses have implicated lncRNAs in the regulation of gene expres...
ver más
¿Tienes un proyecto y buscas un partner? Gracias a nuestro motor inteligente podemos recomendarte los mejores socios y ponerte en contacto con ellos. Te lo explicamos en este video
Proyectos interesantes
SAF2011-22895
PAPEL DE LA TRANSCRIPCION ANTISENTIDO EN EL SILENCIAMIENTO E...
85K€
Cerrado
ncRNAsDevNet
Non coding RNAs and their role in developmental networks
174K€
Cerrado
BIO2011-27220
RNA DE DOBLE HIBRIDO" (R2H) METODO DE CRIBAJE FUNCIONAL DE R...
109K€
Cerrado
BFU2011-23485
FUNCION Y MECANISMO DE LINCRNAS EN LA VIA DE P53
180K€
Cerrado
NonChroRep
Investigating the role of the long noncoding transcriptome i...
2M€
Cerrado
EVOLNCRNAS
The origin and functional evolution of long non coding RNAs
185K€
Cerrado
Fecha límite de participación
Sin fecha límite de participación.
Descripción del proyecto
Recent genomics analyses have facilitated the discovery of a novel major class of stable transcripts, now called long non-coding RNAs (lncRNAs). A growing number of analyses have implicated lncRNAs in the regulation of gene expression, dosage compensation and imprinting, and there is increasing evidence suggesting the involvement of lncRNAs in various diseases such as cancer. Despite recent advances, however, the role of the large majority of lncRNAs remains unknown and there is current debate on what fraction of lncRNAs may just represent transcriptional noise. Moreover, despite a growing number of lncRNAs catalogues for diverse model species, we lack a proper understanding of how these molecules evolve across genomes. Evolutionary analyses of protein-coding genes have proved tremendously useful in elucidating functional relationships and in understanding how the processes in which they are involved are shaped during evolution. Similar insights may be expected from a proper evolutionary characterization of lncRNAs, although the lack of proper tools and basic knowledge of underlying evolutionary mechanisms are a sizable challenge. Here, I propose to combine state-of-the-art computational and sequencing techniques in order to elucidate what evolutionary mechanisms are shaping this enigmatic component of eukaryotic genomes.The first goal is to enable large-scale phylogenomic analyses of lncRNAs by developing, for these molecules, methodologies that are now standard in the evolutionary analysis of protein-coding genes. The second goal is to explore, at high levels of resolution, the evolutionary dynamics of lncRNAs across selected eukaryotic groups for which novel genome-wide data will be produced experimentally using recently developed sequencing techniques that enable obtaining genome-wide footprints of RNA secondary structure. Finally, this dataset will be used to test the impact on lncRNAs evolution of processes known to be important in protein-coding genes.