Descripción del proyecto
EN ESTE PROYECTO NOS INTERESAMOS POR LAS ESTRUCTURAS MAS RELEVANTES EN GEOMETRIA DIFERENCIAL: HIPERBOLICAS REALES, HIPERBOLICAS COMPLEJAS, PROYECTIVAS, CONFORMES, SIMPLECTICAS, DOBLADAS (FOLDED) Y DE POISSON, PARA DICHAS ESTRUCTURAS NOS OCUPAREMOS DE SUS SINGULARIDADES, SUS DEFORMACIONES Y LA GEOMETRIA INTEGRAL,CONSIDERAMOS LAS SINGULARIDADES EN DOS CONTEXTOS, VARIEDADES HIPERBOLICAS TRIDIMENSIONALES Y EN SISTEMAS HAMILTONIANOS, INTEGRABLES O NO, EN EL PRIMER CONTEXTO, ESTUDIAMOS VARIEDADES CON SINGULARIDADES CONICAS PARA ANGULOS MAYORES O IGUALES QUE PI, CON APLICACIONES TOPOLOGICAS, EN EL SEGUNDO, NOS INTERESAMOS POR LOS INVARIANTES DE SINGULARIDADES DE DICHOS SISTEMAS EN VARIEDADES SIMPLECTICAS, DOBLADAS Y DE POISSON, ADEMAS DE SUS APLICACIONES A CUANTIZACION GEOMETRICA Y DE LOS INVARIANTES DE TIPO DINAMICO RELACIONADOS CON LA ENTROPIA,ABORDAMOS LA RIGIDEZ DE ACIONES DE GRUPOS EN VARIEDADES SIMPLECTICAS Y DE POISSON, PARA ACCIONES DE GRUPO SEMISIMPLE, POR OTRO LADO, PLANTEAMOS LAS CUESTIONES DE RIGIDEZ O EXISTENCIA DE DEFORMACIONES PARA ESTRUCTURAS ASOCIADAS A VARIEDADES HIPERBOLICAS: ESTRUCTURAS PROYECTIVAS,HIPERBOLICAS COMPLEJAS Y CONFORMES PLANAS,EN GEOMETRIA INTEGRAL, QUEREMOS UTILIZAR LA TEORIA DE VALORACIONES PARA OBTENER FORMULAS EN ESPACIOS HERMITICOS, INCLUYENDO LOS ESPACIOS HIPERBOLICOS Y PROYECTIVOS COMPLEJOS, PRETENDEMOS DESARROLLAR LA GEOMETRIA INTEGRAL DE LA ESFERA CONFORME, VARIEDADES HIPERBOLICAS\DEFORMACIONES DE ESTRUCTURAS\GEOMETRIA CONFORME\GEOMETRIA HIPERBOLICA COMPLEJA\SINGULARIDADES SISTEMAS HAMILTONIANOS\VARIEDADES DE POISSON\DESIGUALDADES ISOPERIMETRICAS\VALORACIONES INTEGRALES\HOROESFERAS.