Error prone protein synthesis in fungal pathogens Microsporidia its scope and p...
Error prone protein synthesis in fungal pathogens Microsporidia its scope and potential therapeutic targeting
Microsporidia are ubiquitous and poorly treatable eukaryotic obligate intracellular pathogens that threaten human health and industrMicrosporidia are poorly treatable eukaryotic pathogens that threaten human health and industriall...
ver más
¿Tienes un proyecto y buscas un partner? Gracias a nuestro motor inteligente podemos recomendarte los mejores socios y ponerte en contacto con ellos. Te lo explicamos en este video
Información proyecto MicroMISTRANS
Duración del proyecto: 24 meses
Fecha Inicio: 2020-02-26
Fecha Fin: 2022-02-28
Fecha límite de participación
Sin fecha límite de participación.
Descripción del proyecto
Microsporidia are ubiquitous and poorly treatable eukaryotic obligate intracellular pathogens that threaten human health and industrMicrosporidia are poorly treatable eukaryotic pathogens that threaten human health and industrially valuable insects, fish, and cattle. Despite Microsporidia being recognized as emerging pathogens that require development of new drugs, many aspects of their biology remain totally unexplored due to a lack of appropriate genetic tools and because only a handful of laboratories in the world can grow and manipulate Microsporidia in infected host organisms or cell cultures. This proposal involves a promising scientist with a background in biochemistry and molecular biology and who will move to a host laboratory in Newcastle University, UK – a renowned center for excellent training of young researchers, and a leading research center in the field of pathogen evolution. The researcher will undertake a multidisciplinary investigation, combining microbiology, proteomics, and molecular biology, in order to investigate how Microsporidia diversify their proteomes through error-prone protein synthesis (mistranslation). The researcher’s training at the host laboratory – in cultivating and manipulating Microsporidia in mammalian cell lines for proteomic and toxicity studies – will synergistically complement the researcher’s expertise in molecular biology of protein synthesis. Completing the project will equip the researcher with a rare, increasingly valuable and transferable skill of Microsporidia experimental biology that will be a key asset in his transition to an independent research career. The project will deliver the first detailed insights into the ability of Microsporidia to produce myriad protein isoforms from their genes as a result of highly inaccurate translation. The outcome of this project will have general implications for understanding how eukaryotic pathogens can modulate their interactions with the host and evade host immune systems.