Engineering magnetic properties of hexagonal boron nitride based hybrid nanoar...
Engineering magnetic properties of hexagonal boron nitride based hybrid nanoarchitectures
2D magnetic materials have attracted enormous interest over the last years because of their potential towards miniaturization of novel low-power and memory storage technologies. Isostructural and isoelectronic to graphene, an atom...
ver más
¿Tienes un proyecto y buscas un partner? Gracias a nuestro motor inteligente podemos recomendarte los mejores socios y ponerte en contacto con ellos. Te lo explicamos en este video
Proyectos interesantes
DEMONH
DEsign of Multifunctional 2D OrgaNic Hybrids
173K€
Cerrado
PICOMAT
Picometer scale insight and manipulation of novel materials
1M€
Cerrado
2D-Liquid
2D material interactions with liquids probed with nanoscopy...
3M€
Cerrado
MAT2016-77852-C2-2-R
NUEVAS INTERCARAS OPTIMIZADAS PARA DISPOSITIVOS RESPONSIVOS...
121K€
Cerrado
HETERO2D
Novel materials architecture based on atomically thin crysta...
13M€
Cerrado
MAT2017-89993-R
HETEROESTRUCTURAS HIBRIDAS, MATERIALES Y DISPOSITIVOS BASADO...
363K€
Cerrado
Información proyecto WHITEMAG
Duración del proyecto: 26 meses
Fecha Inicio: 2020-03-13
Fecha Fin: 2022-05-31
Fecha límite de participación
Sin fecha límite de participación.
Descripción del proyecto
2D magnetic materials have attracted enormous interest over the last years because of their potential towards miniaturization of novel low-power and memory storage technologies. Isostructural and isoelectronic to graphene, an atomically-thin layer of hexagonal boron nitride (hBN) is electrically insulating, and one of the most prominent 2D materials because of its superior mechanical, thermal and especially chemical properties. Inducing magnetic properties (together with reducing the size of the bandgap) will allow the realization of full potential of hBN nanostructures in functional applications. In this line, the efforts reported to date lack characterization and control of the sample’s properties at the atomic level, which is crucial to achieve a comprehensive understanding of the physical phenomena driving the emergence of magnetic properties.
WHITEMAG aims to create routes for controlled magnetic functionalization of hBN in order to induce and exploit emerging electronic and magnetic properties at the atomic scale. hBN will be precisely modified by exploring novel defect engineering methods to introduce substitutional magnetic atoms, and subsequently by designing hybrid nanoarchitectures that combine hBN with magnetic organic molecules. The structural, electronic and magnetic properties of these systems will be studied by STM/STS, XPS/ARPES, nc-AFM and XMCD, giving a complete picture of the phenomena occurring at the atomistic level. The synthesis and characterization experiments will be addressed based on a surface science approach, involving controlled dosing of molecular and atomic species on well-defined surfaces under ultra-high vacuum (UHV) conditions. If successful, the outcomes of this work will push forward the microscopic understanding of magnetic phenomena in low-dimensional systems, and will open new promising perspectives for the implementation of hBN-based nanostructures in future spintronics and molecular electronics applications.