Innovating Works

2D-Liquid

Financiado
2D material interactions with liquids probed with nanoscopy tools
In this project, we will introduce a myriad of nanoscopy techniques to investigate the liquid-solid interactions taking advantage of either engineered defects or defects already hosted in 2D materials. We will address the pertinen... In this project, we will introduce a myriad of nanoscopy techniques to investigate the liquid-solid interactions taking advantage of either engineered defects or defects already hosted in 2D materials. We will address the pertinent question on the mechanism of reactivity of 2D materials with aqueous electrolytes at ambient conditions and the role of the defects on the dynamics of interfacial charges. At the start of the project, we will explore defects hosted in two classes of 2D materials: hexagonal boron nitride (h-BN) and transition metal dichalcogenides (TMDs). Our plans are to define strategies to extend defect imaging combined with other characterization approaches to a multitude of 2D materials. In parallel, we will explore the role of interfacial liquid taking advantage of novel nanofluidic platforms termed angstrom slits that will allow fine-tuning the balance between 2D and 3D liquid. To control defect density in 2D materials, we will use approaches based on focused ion beam irradiation with Xenon and Helium ions We will adapt and develop different nanoscopy tools such as single-molecule localization microscopy (SMLM), single-particle tracking, Point Accumulation for Imaging in Nanoscale Topography (PAINT) Minimal Emission Fluxes Microscopy MINFLUX and Scanning Ion Conductance Microscopy (SICM). All nanoscopy modalities used in 2D-LIQUID project can operate in –situ under ambient conditions and are compatible with the probing of defect chemistry, charge dynamics in different pH environments, and under different solvents or solvent mixtures. We believe that obtained insights regarding the role of defects in dynamics of the surface charges will shed light on the water and ion transport through nanopores, nanotubes but also ultimately narrow angstrom. Our findings will propel the development of nanofluidics, biosensing, energy harvesting, molecular separation and other nanoscale technologies that exploit liquid 2D-material interfaces. ver más
30/09/2026
3M€
Duración del proyecto: 64 meses Fecha Inicio: 2021-05-22
Fecha Fin: 2026-09-30

Línea de financiación: concedida

El organismo H2020 notifico la concesión del proyecto el día 2021-05-22
Línea de financiación objetivo El proyecto se financió a través de la siguiente ayuda:
ERC-2020-ADG: ERC ADVANCED GRANT
Cerrada hace 4 años
Presupuesto El presupuesto total del proyecto asciende a 3M€
Líder del proyecto
ECOLE POLYTECHNIQUE FEDERALE DE LAUSANNE No se ha especificado una descripción o un objeto social para esta compañía.
Perfil tecnológico TRL 4-5