2D material interactions with liquids probed with nanoscopy tools
In this project, we will introduce a myriad of nanoscopy techniques to investigate the liquid-solid interactions taking advantage of either engineered defects or defects already hosted in 2D materials. We will address the pertinen...
In this project, we will introduce a myriad of nanoscopy techniques to investigate the liquid-solid interactions taking advantage of either engineered defects or defects already hosted in 2D materials. We will address the pertinent question on the mechanism of reactivity of 2D materials with aqueous electrolytes at ambient conditions and the role of the defects on the dynamics of interfacial charges. At the start of the project, we will explore defects hosted in two classes of 2D materials: hexagonal boron nitride (h-BN) and transition metal dichalcogenides (TMDs). Our plans are to define strategies to extend defect imaging combined with other characterization approaches to a multitude of 2D materials. In parallel, we will explore the role of interfacial liquid taking advantage of novel nanofluidic platforms termed angstrom slits that will allow fine-tuning the balance between 2D and 3D liquid. To control defect density in 2D materials, we will use approaches based on focused ion beam irradiation with Xenon and Helium ions
We will adapt and develop different nanoscopy tools such as single-molecule localization microscopy (SMLM), single-particle tracking, Point Accumulation for Imaging in Nanoscale Topography (PAINT) Minimal Emission Fluxes Microscopy MINFLUX and Scanning Ion Conductance Microscopy (SICM). All nanoscopy modalities used in 2D-LIQUID project can operate in –situ under ambient conditions and are compatible with the probing of defect chemistry, charge dynamics in different pH environments, and under different solvents or solvent mixtures. We believe that obtained insights regarding the role of defects in dynamics of the surface charges will shed light on the water and ion transport through nanopores, nanotubes but also ultimately narrow angstrom. Our findings will propel the development of nanofluidics, biosensing, energy harvesting, molecular separation and other nanoscale technologies that exploit liquid 2D-material interfaces.ver más
Seleccionando "Aceptar todas las cookies" acepta el uso de cookies para ayudarnos a brindarle una mejor experiencia de usuario y para analizar el uso del sitio web. Al hacer clic en "Ajustar tus preferencias" puede elegir qué cookies permitir. Solo las cookies esenciales son necesarias para el correcto funcionamiento de nuestro sitio web y no se pueden rechazar.
Cookie settings
Nuestro sitio web almacena cuatro tipos de cookies. En cualquier momento puede elegir qué cookies acepta y cuáles rechaza. Puede obtener más información sobre qué son las cookies y qué tipos de cookies almacenamos en nuestra Política de cookies.
Son necesarias por razones técnicas. Sin ellas, este sitio web podría no funcionar correctamente.
Son necesarias para una funcionalidad específica en el sitio web. Sin ellos, algunas características pueden estar deshabilitadas.
Nos permite analizar el uso del sitio web y mejorar la experiencia del visitante.
Nos permite personalizar su experiencia y enviarle contenido y ofertas relevantes, en este sitio web y en otros sitios web.