This project studies the application of analytical tools to the resolution of geometric problems. The geometric problems proposed to be studied arise from hyperbolic geometry and representation theory. More precisely, it is propos...
This project studies the application of analytical tools to the resolution of geometric problems. The geometric problems proposed to be studied arise from hyperbolic geometry and representation theory. More precisely, it is proposed to investigate hyperbolic ends and flat conformal structures (FCSs). The former constitute an important part of the study of hyperbolic manifolds in general, since they arise when the Nielsen Kernel (which is bounded) is removed from a (convex, co-compact) hyperbolic manifold, nonetheless, the structure of the moduli space of hyperbolic ends as well as its compactification remains to be understood. Part of this project is devoted to the study of this problem. The latter arise as a natural geometric structure in the theory of representations. They are intimitely related to hyperbolic ends, but the properties of this identification remain to be fully understood, and part of the project is devoted to the resolution of this problem. This should also yield geometric structures on the moduli space of FCSs. Finally, in the two dimensional case, these structures yield continuous curves inside the moduli space of FCSs, whose geometric properties we propose to investigate. The tools used are mostly immersed submanifolds satisfying elliptic conditions, such as constant curvature. In particular, it is proposed to use a new concept of curvature, developed by the applicant, called special Lagrangian (SL) curvature, which captures the important convexity properties of Gaussian curvature whilst overcoming its technical limitations. In order to fully realise the potential of SL curvature as a geometric tool, various properties (especially compactness) remain to be fully understood, to which the final part of the project is devoted.ver más
Seleccionando "Aceptar todas las cookies" acepta el uso de cookies para ayudarnos a brindarle una mejor experiencia de usuario y para analizar el uso del sitio web. Al hacer clic en "Ajustar tus preferencias" puede elegir qué cookies permitir. Solo las cookies esenciales son necesarias para el correcto funcionamiento de nuestro sitio web y no se pueden rechazar.
Cookie settings
Nuestro sitio web almacena cuatro tipos de cookies. En cualquier momento puede elegir qué cookies acepta y cuáles rechaza. Puede obtener más información sobre qué son las cookies y qué tipos de cookies almacenamos en nuestra Política de cookies.
Son necesarias por razones técnicas. Sin ellas, este sitio web podría no funcionar correctamente.
Son necesarias para una funcionalidad específica en el sitio web. Sin ellos, algunas características pueden estar deshabilitadas.
Nos permite analizar el uso del sitio web y mejorar la experiencia del visitante.
Nos permite personalizar su experiencia y enviarle contenido y ofertas relevantes, en este sitio web y en otros sitios web.