Deformation Theory of infinite-type hyperbolic manifolds
Hyperbolic geometry, and its connection to 3-dimensional geometry, have been a key topic in contemporary mathematics, leading for instance to the resolution of the Poincaŕe Conjecture (2006) and to the Fields medals awarded to Thu...
Hyperbolic geometry, and its connection to 3-dimensional geometry, have been a key topic in contemporary mathematics, leading for instance to the resolution of the Poincaŕe Conjecture (2006) and to the Fields medals awarded to Thurston (1982), McMullen (1998), Perelman (2006, declined) and Mirzakhani (2014). The project will enter the unexplored territory that opens when removing this fundamental hypothesis. Specifically, the PI plans to attack the very challenging problem of understanding the space of hyperbolic metrics on 3-manifolds that have a non-finitely generated fundamental group. The project lies at the intersection between the study of the topology and geometry of hyperbolic 3-manifolds and is well-suited to the complementary expertise of the PI and his supervisor, professor Schlenker, the PI being an expert of the topology of infinite-type 3-manifolds and the supervisor being an expert in hyperbolic geometry. An essential aspect of this research program is understanding the interplay between the topology and the geometry of infinite-type hyperbolic manifolds with the goal to borrow insights from each side to address issues in the other. One of the first objectives is to understand, by looking at topological properties, how much of the rich theory of the finite-type setting extends to the case where the fundamental group is not finitely generated. The second objective is more geometric and plans to study infinite-type 3-manifolds by seeing them as geometric ‘limits’ of finite-type hyperbolic 3-manifolds and looking at which geometric, or topological, aspects survive in the limit. The second part of the project will involve, under the direction of professor Krasnov, is to investigate the AdS-CFT correspondence, an important conjectural relationship linking quantum gravity (formulated as M-theory) in M and conformal field theories (CFT) in the boundary of M, using tools from hyperbolic geometry, e.g. renormalised volume.ver más
Seleccionando "Aceptar todas las cookies" acepta el uso de cookies para ayudarnos a brindarle una mejor experiencia de usuario y para analizar el uso del sitio web. Al hacer clic en "Ajustar tus preferencias" puede elegir qué cookies permitir. Solo las cookies esenciales son necesarias para el correcto funcionamiento de nuestro sitio web y no se pueden rechazar.
Cookie settings
Nuestro sitio web almacena cuatro tipos de cookies. En cualquier momento puede elegir qué cookies acepta y cuáles rechaza. Puede obtener más información sobre qué son las cookies y qué tipos de cookies almacenamos en nuestra Política de cookies.
Son necesarias por razones técnicas. Sin ellas, este sitio web podría no funcionar correctamente.
Son necesarias para una funcionalidad específica en el sitio web. Sin ellos, algunas características pueden estar deshabilitadas.
Nos permite analizar el uso del sitio web y mejorar la experiencia del visitante.
Nos permite personalizar su experiencia y enviarle contenido y ofertas relevantes, en este sitio web y en otros sitios web.