Deciphering the mechanism of irreversible replication fork arrest
DNA replication is essential for cell proliferation. Obstacles to replication generate replication stress by stalling replication forks. In response to replication stress, cells activate the DNA damage checkpoint pathway that coor...
ver más
¿Tienes un proyecto y buscas un partner? Gracias a nuestro motor inteligente podemos recomendarte los mejores socios y ponerte en contacto con ellos. Te lo explicamos en este video
Proyectos interesantes
PID2020-119990GB-I00
REGULACION DE LA REPLICACION GENOMICA TRAS DAÑO EN EL DNA
104K€
Cerrado
ChOReS
Chromatin re-organization in response to replication stress
2M€
Cerrado
SMI-DDR
Single Molecule Imaging of the DNA Damage Response in Live C...
2M€
Cerrado
BFU2010-20034
PAPEL DE RAD53 Y CHK1 EN LA ESTABILIZACION DE HORQUILLAS DE...
145K€
Cerrado
REPSUMODDT
Mechanisms and regulators coordinating replication integrity...
2M€
Cerrado
DNAcheck
Mechanistic analysis of DNA damage signaling and bypass upon...
170K€
Cerrado
Información proyecto Irrev Fork Arrest
Duración del proyecto: 24 meses
Fecha Inicio: 2020-03-11
Fecha Fin: 2022-03-31
Fecha límite de participación
Sin fecha límite de participación.
Descripción del proyecto
DNA replication is essential for cell proliferation. Obstacles to replication generate replication stress by stalling replication forks. In response to replication stress, cells activate the DNA damage checkpoint pathway that coordinates a cellular response to prevent DNA damage and ensure cell survival. One essential function of the checkpoint is to stabilise stalled replication forks and ensure that replication will resume after obstacles are removed. Specifically, the yeast checkpoint effector kinase Rad53 and its human counterpart Chk1 are essential to prevent irreversible replication fork arrest (IRFA), DNA damage and cell death under replication stress. A screen to identify factors required to promote IRFA has revealed a role for unrestricted recombination events in promoting IRFA. However, mechanistic studies are still required to understand how the checkpoint stabilises stalled forks and prevents IRFA. Recently, in vitro replication reconstitution with yeast purified proteins in the lab has helped uncover important mechanisms of DNA replication. I will use this system to reconstitute IRFA in vitro and determine the proteins and enzymatic activities required to promote IRFA in the absence of the checkpoint. I will then look for phosphorylation targets of Rad53 to understand how the checkpoint prevents IRFA. I will study changes at the DNA and replisome of stalled replication forks by 2D electrophoresis, mass spectrometry and cryo-EM to understand the causes of the irreversibility of IRFA. We seek to better characterise an essential function of the DNA damage checkpoint and define a new role for unrestricted recombination in promoting DNA damage. Main challenges of current cancer therapies include the appearance of surviving checkpoint-deficient cancer cells. Despite constant replication stress, it is unknown why these cells do not suffer irreversible fork arrest. Understanding IRFA could help design new therapies to target checkpoint-deficient cancer cells.