Deciphering biomineralization mechanisms through 3D explorations of mesoscale cr...
Deciphering biomineralization mechanisms through 3D explorations of mesoscale crystalline structure in calcareous biomaterials
The fundamental 3D-BioMat project aims at providing a biomineralization model to explain the formation of microscopic calcareous single-crystals produced by living organisms. Although these crystals present a wide variety of shape...
ver más
¿Tienes un proyecto y buscas un partner? Gracias a nuestro motor inteligente podemos recomendarte los mejores socios y ponerte en contacto con ellos. Te lo explicamos en este video
Proyectos interesantes
CGL2013-48247-P
BIOMINERALIZACION EN MOLUSCOS: CRISTALOGRAFIA, ORGANIZACION...
109K€
Cerrado
DYNAMIN
Dynamic Control of Mineralisation
3M€
Cerrado
MAT2015-67593-P
NUEVOS DESARROLLOS EN LA SOLUCION ESTRUCTURAL DE MICRO/NANOD...
36K€
Cerrado
BIONICS
Bio Inspired Routes for Controlling the Structure and Proper...
2M€
Cerrado
MAT2012-35247
NUEVAS METODOLOGIAS DE DETERMINACION DE ESTRUCTURAS CRISTALI...
57K€
Cerrado
BIOMINTEC
Biomineralization Understanding of basic mechanisms for the...
2M€
Cerrado
Información proyecto 3D-BioMat
Duración del proyecto: 66 meses
Fecha Inicio: 2017-02-06
Fecha Fin: 2022-08-31
Fecha límite de participación
Sin fecha límite de participación.
Descripción del proyecto
The fundamental 3D-BioMat project aims at providing a biomineralization model to explain the formation of microscopic calcareous single-crystals produced by living organisms. Although these crystals present a wide variety of shapes, associated to various organic materials, the observation of a nanoscale granular structure common to almost all calcareous crystallizing organisms, associated to an extended crystalline coherence, underlies a generic biomineralization and assembly process. A key to building realistic scenarios of biomineralization is to reveal the crystalline architecture, at the mesoscale, (i. e., over a few granules), which none of the existing nano-characterization tools is able to provide.
3D-BioMat is based on the recognized PI’s expertise in the field of synchrotron coherent x-ray diffraction microscopy. It will extend the PI’s disruptive pioneering microscopy formalism, towards an innovative high-throughput approach able at giving access to the 3D mesoscale image of the crystalline properties (crystal-line coherence, crystal plane tilts and strains) with the required flexibility, nanoscale resolution, and non-invasiveness.
This achievement will be used to timely reveal the generics of the mesoscale crystalline structure through the pioneering explorations of a vast variety of crystalline biominerals produced by the famous Pinctada mar-garitifera oyster shell, and thereby build a realistic biomineralization scenario.
The inferred biomineralization pathways, including both physico-chemical pathways and biological controls, will ultimately be validated by comparing the mesoscale structures produced by biomimetic samples with the biogenic ones. Beyond deciphering one of the most intriguing questions of material nanosciences, 3D-BioMat may contribute to new climate models, pave the way for new routes in material synthesis and supply answers to the pearl-culture calcification problems.