This project will take inspiration from biomineralisation to achieve exceptional, dynamic control over crystallisation processes.
Understanding the fundamental mechanisms which govern crystallisation promises the ability to inh...
ver más
¿Tienes un proyecto y buscas un partner? Gracias a nuestro motor inteligente podemos recomendarte los mejores socios y ponerte en contacto con ellos. Te lo explicamos en este video
Proyectos interesantes
MAT2012-35247
NUEVAS METODOLOGIAS DE DETERMINACION DE ESTRUCTURAS CRISTALI...
57K€
Cerrado
NOC2D
Nucleation of Organic Crystals onto 2D materials
2M€
Cerrado
BIONICS
Bio Inspired Routes for Controlling the Structure and Proper...
2M€
Cerrado
MAT2015-67593-P
NUEVOS DESARROLLOS EN LA SOLUCION ESTRUCTURAL DE MICRO/NANOD...
36K€
Cerrado
EQC2018-005034-P
Unidad de caracterización químico-física de materiales micro...
281K€
Cerrado
IJCI-2017-31507
Ciencia e Ing. de materiales funcionales:Caracterización med...
64K€
Cerrado
Información proyecto DYNAMIN
Duración del proyecto: 88 meses
Fecha Inicio: 2018-04-23
Fecha Fin: 2025-08-31
Líder del proyecto
UNIVERSITY OF LEEDS
No se ha especificado una descripción o un objeto social para esta compañía.
TRL
4-5
Presupuesto del proyecto
3M€
Fecha límite de participación
Sin fecha límite de participación.
Descripción del proyecto
This project will take inspiration from biomineralisation to achieve exceptional, dynamic control over crystallisation processes.
Understanding the fundamental mechanisms which govern crystallisation promises the ability to inhibit or promote crystallisation as desired, and to tailor the properties of crystalline materials towards a huge range of applications. Biomineralisation provides a perfect precedent for this approach, where organisms achieve control currently unparalleled in synthetic systems. This is achieved because mineralisation occurs within controlled environments in which an organism can interact with the nascent mineral.
Thanks to recent advances in microfabrication techniques and analytical methods we finally have the tools required to bring such control to the laboratory. DYNAMIN will exploit microfluidic and confined systems to study and interact with crystallisation processes with outstanding spatial and temporal resolution. Flowing droplet devices will be coupled to synchrotron techniques to investigate and control nucleation, using soluble additives and nucleating particles to direct the crystallisation pathway. Static chambers will be used to interact with crystallisation processes over longer length and time scales to achieve spatio-temporal control to rival that in biomineralisation, while a unique confined system – titania nanotubes – will enable the study and control of organic-mediated mineralisation, using fresh reagents and proteinases to interact with the process. Finally, a key biogenic strategy will provide the inspiration to develop a simple and potentially general method to trigger and control the transformation of amorphous precursor phases to single crystal products.
This will generate a new framework for studying and controlling crystallisation processes, where these new skills will find applications in sectors ranging from the Chemical Industry, to Healthcare, Advanced Materials, Formulated Products and the Environment.