Knot theory has seen extraordinary developments over the past decades. The arrival of modern homological knot invariants has had far-reaching implications beyond low-dimensional topology, giving insight into old problems through...
Knot theory has seen extraordinary developments over the past decades. The arrival of modern homological knot invariants has had far-reaching implications beyond low-dimensional topology, giving insight into old problems through deep ties between knot theory, algebraic geometry, representation theory, Floer theory, and physics.My ERC project aims to establish a new perspective on knot homology theories using a new type of invariants, so-called multicurves. As objects of Fukaya categories of simple surfaces, these multicurve invariants make local versions of knot homology theories amenable to essentially combinatorial techniques. Thanks to their exceptional geometric and gluing properties, multicurves are ideally suited to implement the divide-and-conquer principle for attacking hard open problems. In fact, I have not only been directly involved in the definition of three of these invariants, but I have also applied them to resolve several open conjectures in the field already.The purpose of my research programme is to investigate fundamental open problems in low-dimensional topology that require a deeper understanding of the new technology of multicurves. To this end, I will pursue the following four lines of basic research: I will investigate the topological properties of the new invariants and their relation to classical invariants. I will explore the existence of local versions of various spectral sequences that are known to relate knot homology theories. I will make the invariants more computable. Finally, I will apply the generic principles that underlie the definition of multicurves to other settings.ver más
Seleccionando "Aceptar todas las cookies" acepta el uso de cookies para ayudarnos a brindarle una mejor experiencia de usuario y para analizar el uso del sitio web. Al hacer clic en "Ajustar tus preferencias" puede elegir qué cookies permitir. Solo las cookies esenciales son necesarias para el correcto funcionamiento de nuestro sitio web y no se pueden rechazar.
Cookie settings
Nuestro sitio web almacena cuatro tipos de cookies. En cualquier momento puede elegir qué cookies acepta y cuáles rechaza. Puede obtener más información sobre qué son las cookies y qué tipos de cookies almacenamos en nuestra Política de cookies.
Son necesarias por razones técnicas. Sin ellas, este sitio web podría no funcionar correctamente.
Son necesarias para una funcionalidad específica en el sitio web. Sin ellos, algunas características pueden estar deshabilitadas.
Nos permite analizar el uso del sitio web y mejorar la experiencia del visitante.
Nos permite personalizar su experiencia y enviarle contenido y ofertas relevantes, en este sitio web y en otros sitios web.