Control of body weight by specialized brain-adipose loop neurons
Disruption of energy homeostasis can lead to obesity, a major health issue worldwide. Therapeutic efforts to reduce adiposity are nullified by metabolic adaptations. The mechanisms underlying these phenomena are unclear, precludin...
Disruption of energy homeostasis can lead to obesity, a major health issue worldwide. Therapeutic efforts to reduce adiposity are nullified by metabolic adaptations. The mechanisms underlying these phenomena are unclear, precluding efficient intervention. Although it is well established that important hormonal factors control adiposity, it is less appreciated that fat (white adipose tissue, WAT) is innervated by sympathetic and sensory fibres forming, with discrete brain nuclei, loop circuits. These circuits are well-positioned for enabling WAT-brain bidirectional, non-hormonal communication, yet they remained uncharacterized.
This project will uncover the brain circuits processing sensory-sympathetic homeostatic control of body weight. Using labelling tracing strategies of the WAT, I will identify the brain areas containing loop neurons. I will interrogate their role in regulating body weight and processing WAT-derived inputs, using cutting-edge and complementary single-cell imaging and transcriptomic analysis. Complementarily, I will functionally manipulate, using opto- and chemo-genetics tools, the activity of loop neurons, and their brain→WAT outputs, in lean mice, mimicking activity changes in obesity, and assess system-wide effects on behavior, metabolism, and body weight.
My expertise in both central and peripheral systems gives me a unique perspective to address these fundamental questions. Uncovering the role of non-hormonal WAT-body communication in the regulation of energy homeostasis will revolutionise our understanding of weight regulation in health and disease. This project will identify new molecular targets to develop better therapeutic strategies for obesity while also creating a platform for synergy between brain circuits and body organs, facilitating a host of future advances and new research directions.ver más
Seleccionando "Aceptar todas las cookies" acepta el uso de cookies para ayudarnos a brindarle una mejor experiencia de usuario y para analizar el uso del sitio web. Al hacer clic en "Ajustar tus preferencias" puede elegir qué cookies permitir. Solo las cookies esenciales son necesarias para el correcto funcionamiento de nuestro sitio web y no se pueden rechazar.
Cookie settings
Nuestro sitio web almacena cuatro tipos de cookies. En cualquier momento puede elegir qué cookies acepta y cuáles rechaza. Puede obtener más información sobre qué son las cookies y qué tipos de cookies almacenamos en nuestra Política de cookies.
Son necesarias por razones técnicas. Sin ellas, este sitio web podría no funcionar correctamente.
Son necesarias para una funcionalidad específica en el sitio web. Sin ellos, algunas características pueden estar deshabilitadas.
Nos permite analizar el uso del sitio web y mejorar la experiencia del visitante.
Nos permite personalizar su experiencia y enviarle contenido y ofertas relevantes, en este sitio web y en otros sitios web.