"Recommender Systems have become essential personalized navigational tools for users
to wade through the plethora of online content as they allow users to
discover relevant information that they would have never known it
existed....
ver más
TELEFÓNICA I+D
Realizacion de actividades y proyectos de investigacion y desarrollo encaminados al desarrollo de productos, desarrollos explotarios, invest...
TRL
4-5
| 1M€
Fecha límite participación
Sin fecha límite de participación.
Financiación
concedida
El organismo FP7 notifico la concesión del proyecto
el día 2013-11-30
No tenemos la información de la convocatoria
0%
100%
Información adicional privada
No hay información privada compartida para este proyecto. Habla con el coordinador.
¿Tienes un proyecto y buscas un partner? Gracias a nuestro motor inteligente podemos recomendarte los mejores socios y ponerte en contacto con ellos. Te lo explicamos en este video
Proyectos interesantes
TIN2016-80630-P
RECOMENDACION EN MEDIOS SOCIALES: CONTEXTO, DIVERSIDAD Y SES...
82K€
Cerrado
TIN2014-55006-R
PERSONALIZACION SOCIAL EN SISTEMAS DE RECOMENDACION
81K€
Cerrado
TIN2012-32682
AUMENTO DE PRESTACIONES EN LOS SISTEMAS DE RECOMENDACION BAS...
14K€
Cerrado
PID2019-108965GB-I00
MAS ALLA DE LA RECOMENDACION ESTATICA: EQUIDAD, INTERACCION...
99K€
Cerrado
PTQ-10-03558
Context-Aware Recommender Systems
68K€
Cerrado
TIN2011-29221-C03-03
MULTIMODAL APPROACHES FOR AFFECTIVE MODELLING IN INCLUSIVE P...
77K€
Cerrado
Información proyecto CARS
Líder del proyecto
TELEFÓNICA I+D
Realizacion de actividades y proyectos de investigacion y desarrollo encaminados al desarrollo de productos, desarrollos explotarios, invest...
TRL
4-5
| 1M€
Presupuesto del proyecto
166K€
Fecha límite de participación
Sin fecha límite de participación.
Descripción del proyecto
"Recommender Systems have become essential personalized navigational tools for users
to wade through the plethora of online content as they allow users to
discover relevant information that they would have never known it
existed. In recent years, the importance of this information discovery
process as opposed to explicit (keyword-based) search has been emphasized.
Current research in Recommender Systems, while taking into account the
relation between user and item, often ignores the ``context'' of the
recommendation. We define as ``context'' any environmental, temporal
or otherwise variable that influences a decision a user might make.
Early work on Context-Aware Recommender Systems (CARS) has found that
contextual factors do influence the recommendation needs of users.
However, the role that each of the contextual variables (e.g. time,
location, activity, emotional state, social network, etc.) plays on
the user's needs is still not clearly defined.
The main aim of this proposal is to build a compact Context-Aware
Recommender System (CARS) for mobile and desktop computing devices.
The research methodology of this proposal is structured in 3 research
objectives:
1) Understanding contextual information in Recommender Systems
Where data will be mined in order to uncover underlying
patterns in the influence of context on users' preferences.
2) Building Context-aware Recommendation models
Which involves using state of the art Machine Learning to build
models and algorithms for CARS
3) Building a prototype and deployment
Which involves building and deploying a prototype based on the
developed algorithms and conducting a user study
Modern Machine Learning algorithms have been shown to perform well in
Recommendation Tasks and this proposal has a strong algorithmic and
methods focus but also aims at knowledge discovery both through Data
Mining and Human Computer Interaction techniques."