The goal of this Fellowship is to derive quantitative estimates on the computational complexity of spectral problems in quantum mechanics. The theoretical framework for this task is provided by the so-called Solvability Complexity...
ver más
¿Tienes un proyecto y buscas un partner? Gracias a nuestro motor inteligente podemos recomendarte los mejores socios y ponerte en contacto con ellos. Te lo explicamos en este video
Proyectos interesantes
KPRDG
Quantum graphs with quasiperiodic and random interactions
154K€
Cerrado
PGC2018-096504-B-C32
ORTOGONALIDAD Y APROXIMACION: TEORIA Y APLICACIONES EN FISIC...
36K€
Cerrado
Información proyecto COCONUT
Duración del proyecto: 29 meses
Fecha Inicio: 2020-04-16
Fecha Fin: 2022-09-30
Líder del proyecto
CARDIFF UNIVERSITY
No se ha especificado una descripción o un objeto social para esta compañía.
TRL
4-5
Presupuesto del proyecto
213K€
Fecha límite de participación
Sin fecha límite de participación.
Descripción del proyecto
The goal of this Fellowship is to derive quantitative estimates on the computational complexity of spectral problems in quantum mechanics. The theoretical framework for this task is provided by the so-called Solvability Complexity Index, which roughly speaking, is the number of successive limits needed to solve the computational problem. I will approach this task by combining techniques from numerical analysis with modern methods from spectral approximation theory.
The project is divided into three concise work projects:
WP1: NONRELATIVISTIC QUANTUM SYSTEMS.
In this project, the spectral problem for Schrödinger operators with various types of potentials is studied. New sharp estimates on the computational complexity are derived. This will contribute to a comprehensive understanding of the nonrelativistic theory.
WP2: RESONANCES.
In this second project, complexity issues are considered for the computation of scattering resonances in quantum mechanics. I will introduce new mathematical tools, which have not been used in complexity theory before to construct algorithms which compute the set of resonances of Schrödinger operators in one limit.
WP3: EXTENSION TO RELATIVISTIC THEORY.
The purpose of the final project is to extend the above results to the relativistic setting, in which the Schrödinger operator is replaced by a Dirac operator. This task is far from trivial, as methods from the Schrödinger case are generally not useful for Dirac operators.
I also have robust career development and public outreach agendas, to complement the scientific aspects of this proposal. Combined, all these elements will establish me as a prominent research leader upon my return to Germany, with extensive links throughout Europe and the US.