Computation of Nuclear Magnetic Relaxation in Paramagnetic Systems
The spectral parameters of nuclear magnetic resonance (NMR) provide information on molecular structure and properties. Furthermore, NMR relaxation conveys information on molecular dynamics, rotation, chemical exchange and collisio...
ver más
¿Tienes un proyecto y buscas un partner? Gracias a nuestro motor inteligente podemos recomendarte los mejores socios y ponerte en contacto con ellos. Te lo explicamos en este video
Proyectos interesantes
BIO-enMR
New routes for magnetic resonance spectroscopy of biomolecul...
2M€
Cerrado
2F4BIODYN
Two Field Nuclear Magnetic Resonance Spectroscopy for the Ex...
1M€
Cerrado
FASTER
Faster magic angle spinning leads to a resolution revolution...
2M€
Cerrado
SOLID_NMR_DYNAMICS
Development of solid state NMR methods at 100 kHz magic angl...
199K€
Cerrado
TRYP
Transportable Hyperpolarization for Imaging
150K€
Cerrado
HP4all
Persistent and Transportable Hyperpolarization for Magnetic...
2M€
Cerrado
Información proyecto CNMRPS
Líder del proyecto
OULUN YLIOPISTO
No se ha especificado una descripción o un objeto social para esta compañía.
TRL
4-5
Presupuesto del proyecto
170K€
Fecha límite de participación
Sin fecha límite de participación.
Descripción del proyecto
The spectral parameters of nuclear magnetic resonance (NMR) provide information on molecular structure and properties. Furthermore, NMR relaxation conveys information on molecular dynamics, rotation, chemical exchange and collisions. Paramagnetic NMR (pNMR) is gaining importance in chemistry, structural biology, magnetic resonance imaging (MRI) and materials science. Open-shell molecules experience the sc. paramagnetic relaxation enhancement (PRE) due to time-dependent interaction of the nuclear spin with the unpaired electron(s). Besides dynamics, the different contributions to PRE also encode structural information. Phenomenological theories describing PRE involve time correlation and spectral density functions of either the time-averaged or instantaneous hyperfine interaction, in the sc. Curie and electronic relaxation, respectively. These models rely on approximations such as single-exponential decay of the correlation functions, and simplified models of molecular dynamics. We will apply the full arsenal of state-of-the-art computational chemistry on PRE, by first performing ab initio molecular dynamics simulations, and then applying quantum-chemical calculations of the magnetic properties for instantaneous simulation snapshots. We apply the Redfield relaxation theory for the Curie mechanism, using the novel and general methodology for the pNMR shielding tensor developed by the host group, as well as the electron spin relaxation rate. The electronic relaxation of nuclear spins is then approached both by the semiclassical Redfield theory applied to the instantaneous dipolar interaction between the electronic and nuclear spins, as well as by fully quantum-mechanical, coupled time-evolution of the two systems. Methods are developed with the aqueous solution of the Ni(II) ion used as prototype system. Applications to Gd(aq) as well as endohedral Gd fullerenes are investigated, with impact on the development of novel, efficient and safe MRI contrast agents.