Innovating Works

HP4all

Financiado
Persistent and Transportable Hyperpolarization for Magnetic Resonance
Magnetic resonance imaging (MRI) and nuclear magnetic resonance (NMR) and are two well-established powerful and versatile tools that are extensively used in many fields of research, in clinics and in industry. Despite considerable... Magnetic resonance imaging (MRI) and nuclear magnetic resonance (NMR) and are two well-established powerful and versatile tools that are extensively used in many fields of research, in clinics and in industry. Despite considerable efforts involving highly sophisticated instrumentation, these techniques suffer from low sensitivity, which keeps many of today’s most interesting problems in modern analytical sciences below the limits of MR detection. Hyperpolarization (HP) in principle provides a solution to this limitation. We have recently pioneered breakthrough approaches using dissolution dynamic nuclear polarization (d-DNP) for preparing nuclear spins in highly aligned states, and therefore boosting sensitivity in several proof-of-concept reports on model systems. The proposed project aims to leverage these new advances through a series of new concepts i) to generate the highest possible hyperpolarization that can be transported in a persistent state, and ii) to demonstrate their use in magnetic resonance experiments with > 10’000 fold sensitivity enhancements, with the potential of revolutionizing the fields of MRI and NMR. By physically separating the source of polarization from the substrate at a microscopic level, we will achieve polarized samples with lifetimes of days that can be stored and transported over long distances to MRI centers, hospitals and NMR laboratories. Notable applications in the fields of drug discovery, metabolomics and real-time metabolic imaging in living animals will be demonstrated. These goals require a leap forward with respect to today’s protocols, and we propose to achieve this through a combination of innovative sample formulations, new NMR methodology and advanced instrumentation. This project will yield to a broadly applicable method revolutionizing analytical chemistry, drug discovery and medical diagnostics, and thereby will provide a powerful tool to solve challenges at the forefront of molecular and chemical sciences today. ver más
31/12/2022
2M€
Duración del proyecto: 72 meses Fecha Inicio: 2016-12-08
Fecha Fin: 2022-12-31

Línea de financiación: concedida

El organismo H2020 notifico la concesión del proyecto el día 2022-12-31
Línea de financiación objetivo El proyecto se financió a través de la siguiente ayuda:
ERC-2016-STG: ERC Starting Grant
Cerrada hace 9 años
Presupuesto El presupuesto total del proyecto asciende a 2M€
Líder del proyecto
UNIVERSITE LYON 1 CLAUDE BERNARD No se ha especificado una descripción o un objeto social para esta compañía.
Perfil tecnológico TRL 4-5