COLLECTING AND PROCESSING EVIDENCE THAT MATTERS IN EDUCATION: PENTABILITIES AND...
COLLECTING AND PROCESSING EVIDENCE THAT MATTERS IN EDUCATION: PENTABILITIES AND ML-ASSISTED HUMAN DECISION MAKING
KEY TO PROGRESS IS HAVING A WELL-DEFINED GOAL THAT CAN BE UNDERSTOOD, SHARED, AND FOR WHICH PROGRESS IS OBSERVABLE, THE GOAL OF EDUCATION IS TO FACILITATE THAT INDIVIDUALS CONTRIBUTE AND SUCCEED IN THEIR WORKPLACE, FAMILY ENVIRON...
KEY TO PROGRESS IS HAVING A WELL-DEFINED GOAL THAT CAN BE UNDERSTOOD, SHARED, AND FOR WHICH PROGRESS IS OBSERVABLE, THE GOAL OF EDUCATION IS TO FACILITATE THAT INDIVIDUALS CONTRIBUTE AND SUCCEED IN THEIR WORKPLACE, FAMILY ENVIRONMENTS AND SOCIAL GROUPS, TEST SCORES HAVE EXHAUSTED THEIR VALUE TO MEASURE PROGRESS IN ACHIEVING THIS GOAL, SOCIAL AND PERSONAL SKILLS HAVE PROVEN TO BE KEY TO FUTURE SUCCESS BUT HAVE NOT BEEN CENTRAL IN EDUCATION YET BECAUSE OF LACK OF EVIDENCE-BASED MEASURES, WHICH HAS GREATLY INHIBITED THE POWER OF EDUCATION TO TRANSFORM SOCIETIES, THE PROJECT PROVIDES THE FIRST METHODOLOGY TO COLLECT 34 BEHAVIORS, THAT WE CALL PENTABILITIES, THAT PROVIDE EVIDENCE OF COGNITIVE AND NON-COGNITIVE SKILLS OF INDIVIDUALS, THE AIMS IS TO PROVE ITS POWER FOR THREE MAIN PURPOSES: 1) TO FACILITATE FORMATIVE ASSESSMENT AND HENCE TO IMPROVE GROWTH OF STUDENTS AND PRACTITIONERS, 2) TO IDENTIFY BETTER PRACTICES AND 3) TO IMPROVE THE MATCH QUALITY OF INDIVIDUALS TO PROGRAMS OR JOBS, ON THE OTHER HAND, ONCE THE RELEVANT DATA IS AVAILABLE, HOW CAN WE MAKE BEST USE OF IT TO FACILITATE OPTIMAL INDIVIDUAL AND SOCIETAL DECISION MAKING? MACHINE LEARNING IS NOW BEING USED TO ASSIST POLICY, BUT IT RAISES TWO IMPORTANT CONCERNS, THE FIRST IS THAT ML CAN HAVE A LARGE IMPACT ON THE FAIRNESS OF THE SYSTEM, WE EXPLORE DESIGN FEATURES OF ML ALGORITHMS THAT CAN IMPROVE FAIRNESS IN CENTRALIZED PLATFORMS BY CHANGING HOW CHOICES ARE MADE WITHIN THE PLATFORM AND OPTIMALLY DEFINING WHO SHOULD DECIDE WHAT, SECOND, IN MANY INSTANCES ML TELLS YOU WHAT TO DO, BUT NOT WHY, WHICH DOES NOT FACILITATE ML HELPING INDIVIDUALS UNDERSTAND THE DATA TO ENHANCE THEIR DECISION MAKING, WE AIM AT DESIGNING ML ALGORITHMS THAT ARE DESIGNED TO OPTIMIZE HOW INFORMATION IN THE DATA IS VISUALIZED TO FACILITATE OPTIMAL HUMAN DECISION MAKING, THIS INVOLVES INCLUDING THE HUMAN REACTION TO ML INTO THE TRAINING DATA, A NOVEL APPROACH THAT THIS PROJECT PUSHES FORWARD TO MAKE THE BEST USE OF ML IN POLICY, 21ST CENTURY SKILLS\PENTABILITIES\ALGORITHM DESIGNver más
Seleccionando "Aceptar todas las cookies" acepta el uso de cookies para ayudarnos a brindarle una mejor experiencia de usuario y para analizar el uso del sitio web. Al hacer clic en "Ajustar tus preferencias" puede elegir qué cookies permitir. Solo las cookies esenciales son necesarias para el correcto funcionamiento de nuestro sitio web y no se pueden rechazar.
Cookie settings
Nuestro sitio web almacena cuatro tipos de cookies. En cualquier momento puede elegir qué cookies acepta y cuáles rechaza. Puede obtener más información sobre qué son las cookies y qué tipos de cookies almacenamos en nuestra Política de cookies.
Son necesarias por razones técnicas. Sin ellas, este sitio web podría no funcionar correctamente.
Son necesarias para una funcionalidad específica en el sitio web. Sin ellos, algunas características pueden estar deshabilitadas.
Nos permite analizar el uso del sitio web y mejorar la experiencia del visitante.
Nos permite personalizar su experiencia y enviarle contenido y ofertas relevantes, en este sitio web y en otros sitios web.